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Abstract 

Background and Objective: Parkinson's disease (PD) is the second most common progressive 

neurological condition after Alzheimer's, characterized by motor and non-motor symptoms. 

Developing a method to diagnose the condition in its beginning phases is essential because of 

the significant number of individuals afflicting with this illness. PD is typically identified using 

motor symptoms or other Neuroimaging techniques, such as DATSCAN and SPECT. These 

methods are expensive, time-consuming, and unavailable to the general public; furthermore, 

they are not very accurate. These constraints encouraged us to develop a novel technique using 

SHAP and Hard Voting Ensemble Method based on voice signals.  

Methods: In this article, we used Pearson Correlation Coefficients to understand the 

relationship between input features and the output, and finally, input features with high 

correlation were selected. These selected features were classified by the Extreme Gradient 

Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Gradient Boosting, and 

Bagging. Moreover, the Hard Voting Ensemble Method was determined based on the 

performance of the four classifiers. At the final stage, we proposed Shapley Additive 

exPlanations (SHAP) to rank the features according to their significance in diagnosing 

Parkinson's disease.  

Results and Conclusion: The proposed method achieved 85.42% accuracy, 84.94% F1-score, 

86.77% precision, 87.62% specificity, and 83.20% sensitivity. The study's findings 

demonstrated that the proposed method outperformed state-of-the-art approaches and can assist 

physicians in diagnosing Parkinson's cases. 
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1. Introduction 

Parkinson's disease (PD) is the most widespread movement condition and the second most 

prevalent neurodegenerative illness after Alzheimer's [1]. The etiology of this disease is the 

slow degeneration of dopaminergic neurons in the midbrain, which results in various motor 
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and non-motor problems [2]. The most noticeable symptoms of Parkinson's disease are 

tremors, rigidity, bradykinesia, postural instability, slow movement, hyposmia, sleep 

difficulties, and changes in voice tone [3]. Patients with PD typically begin experiencing 

symptoms at age 58; however, symptoms can begin as early as 40 in some cases [4]. Over 8.5 

million people worldwide were estimated to have Parkinson's disease in 2019. According to 

current estimates, Parkinson's disease caused 329,000 deaths and 5.8 million years of 

disability-adjusted life in 2019 (an increase of 81% from 2000) [5]. The Global Burden of 

Disease Study projects that 13 million PD cases will be by 2040 [6]. 

     Although non-motor symptoms are present in many individuals before the start of PD, they 

lack specificity, are challenging to evaluate, and vary from patient to patient [7]. Consequently, 

in most cases, Parkinson's disease is initially diagnosed based on motor symptoms. There are 

a total of three steps necessary to diagnose the condition. The physician often determines the 

first stage based on the patient's complaints and the neurological examination that follows the 

disease history [8]. Following the confirmation of symptoms, the next step is drug therapy, in 

which the patient with probable Parkinson's disease is treated with dopamine. If the condition 

improves, there is a significant likelihood that the individual has the disease [9]. The lack of a 

solid and consistent clinical response to the dopaminergic medication has driven the search for 

disease biomarkers, including imaging and laboratory-based techniques, known as the third 

stage [10]. Imaging diagnostic procedures can detect issues in the brain. However, they are 

invasive, expensive, or insufficiently specific, such as single photon emission computed 

tomography (SPECT), DaTSCAN or nuclear magnetic resonance with diffusion tensor 

imaging (NMR-DTI) [11]. On the other hand, not everyone may have access to laboratory tests, 

particularly in underdeveloped nations [9]. As a result, it is critical to develop an early 

diagnostic approach that is simple, quick, accurate, and open to the general public. 

     Up to 89 % of Parkinson's patients experience speech difficulties [12]. Common perceptual 

symptoms include reduced loudness (hypophonia), pitch change (monotone), breathy and 

harsh voice quality, and inaccurate articulation [13]. Therefore, recording the patient's voice is 

a beneficial diagnostic technique since people with Parkinson's disease have distinctive vocal 

traits. Machine Learning (ML), a subfield of artificial intelligence, is gaining traction in the 

medical field because of its potential to improve the course of treatment for patients with 

chronic diseases [14]. Consequently, applying machine learning algorithms to a collection of 

speech recordings to detect Parkinson's disease properly would be a feasible screening step 

before seeing a clinician [15]. 
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     This study utilizes a feature selection method based on Pearson Correlation Coefficients 

(PCCs) to determine the optimal number of features for classification. After extracting features, 

they are given as input to the hard voting ensemble method. In the final phase, a novel 

explainable artificial intelligence (XAI) technique, i.e., Shapley Additive exPlanations 

(SHAP), is employed to gain a more comprehensive understanding of the effect of the features 

on the output. 

2. Related Works 

As the prevalence of Parkinson's disease rises, numerous researchers have demonstrated a keen 

interest in developing a diagnostic method. Using machine learning has significantly advanced 

this strategy. Karabayir et al. [16] evaluated the data using several ML methods, including 

Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), 

Random Forest (RF), Support Vector Machines (SVM), K-nearest Neighbors (KNN), Least 

Absolute Shrinkage and Selection Operator Regression (LASSO), as well as Logistic 

Regression (LR). In addition, they used a variable significance analysis to identify critical 

characteristics for diagnosing patients with PD, achieving an accuracy of 84.10%. Magesh et 

al. [17] developed a ML model capable of classifying each DaTSCAN as having Parkinson's 

disease or not. Using Local Interpretable Model-Agnostic Explainer (LIME) techniques, visual 

indicators were employed to convey the reasoning behind the prediction. Transfer learning was 

utilized to train DaTSCANs using the Parkinson's Progression Markers Initiative database on 

a Convolutional Neural Network (CNN). 

     The approach proposed by Sajal et al. [18] takes in rest tremor and vowel phonation data 

from smartphones equipped with accelerometer and voice recorder sensors. They employed 

the Maximum Relevance Minimal Redundancy (MRMR) algorithm for feature selection, a 

technique based on information theory. After selecting features, they investigated and 

optimized different classifiers, including KNN, SVM, and Naive Bayes. In the end, KNN 

demonstrated the highest accuracy and the best performance. Mittal and Sharma [19] proposed 

a classification method for Parkinson's illness that combines data partitioning with the 

algorithm for feature selection and Principal Component Analysis (PCA). They also used three 

different classifiers to classify all data partitions, including the weighted KNN, LR, and 

Medium Gaussian Kernel SVM (MGSVM). 

     Karaman et al. [8] created CNNs for automatic PD identification using voice signals 

obtained from biomarkers. SqueezeNet, ResNet101, and DenseNet161 architectures were 

retrained and assessed to find which architecture can reliably categorize frequency-time 
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information. Mohammadi et al. [20] proposed autoencoders as efficient feature extractors. 

Stacking a combination of SVM, XGBoost, Multilayer Perceptron (MLP), and SVM, they 

discriminated against PD patients from usual ones. Also, a voting mechanism was employed 

to improve each classifier's predictions. 

     Pramanik et al. [21] created a model based on the vocal fold, time-frequency, and baseline 

features of people with PD. They began by putting the vocal characteristics through a series of 

tests, including correlation, the fisher score, and a mutual information-based feature selection 

scheme. The assessed features were progressively sent to multiple classifiers, with Naive Bayes 

emerging as the top classifier for the proposed model. Rahman et al. [22] assessed the difficulty 

of PD identification based on various voice signal forms. A signal processing algorithm, i.e., 

MFCC, was used to extract numerical features from the speech phonations. Through the use of 

the Linear Discriminant Analysis (LDA) model, the dimensionality of the retrieved MFFC 

features was decreased. Different machine learning models were developed during the final 

phase. 

     Lamba et al. [23] proposed a hybrid PD detection system based on speech signals. Three 

feature selection approaches were used, including mutual information gain, extra tree, and 

genetic algorithm, as well as three classifiers, including Naive bayes, KNN, and RF. The 

imbalance of the dataset was fixed by the Synthetic Minority Oversampling Technique 

(SMOTE). Nilashi et al. [24] employed unsupervised and supervised learning approaches to 

apply UPDRS prediction to identify PD. The study showed that deploying Expectation-

maximization with Support vector regression (SVR) ensembles outperformed Decision Trees 

(DT), Neuro-fuzzy, and SVR paired with other clustering techniques in predicting Motor-

UPDRS and Total-UPDRS. 

3. Materials and Methods 

The proposed method employs the Pearson Correlation Coefficients, Hard Voting Ensemble 

Method, SHAP, and different classification algorithms, including XGBoost, LightGBM, 

Gradient Boosting, and Bagging, which will be discussed in this section. 

3.1. Dataset 

We used the "Parkinson Dataset with Replicated Acoustic Features" given to the Machine 

Learning repository at the University of California, Irvine, in April 2019 by Naranjo et al. [25]. 

In this dataset, characteristics are gathered by examining the sound recordings of 80 individuals 

(40: healthy, 40: PD). Three repetitions of a five-second-long phonation of the vowel /a/ were 

performed. The sampling rate for digital recordings was 44.1 kHz, and the sample size was 16 
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bits. The collected features were separated into various groups based on whether or not they 

share similar formulations. This segmentation yielded nine groups, four of which had a single 

characteristic (Table 1). 

3.2. Shapley Additive Explanations 

SHAP refers to "Shapley Additive exPlanations," a ML technique that explains model 

predictions and provides interpretability for ML models [26]. This strategy entails retraining 

the model on all subsets of features 𝑆 ⊆ 𝐹, where F is the complete collection of features. It 

assigns a significant value to each feature, indicating that feature's influence on model 

prediction. To extract the impacts of factor  two models are trained. The first model 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) is trained with factor i while the other one 𝑓𝑆(𝑥𝑆) is trained without it. Then the 

predictions of these two models are compared to the present input 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆), 

where 𝑥𝑆 represents the values of the input features in the set S [27], [28]. According to 

cooperative game theory, Shapley value for the model can be computed as follows: 

𝜙𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹 \{𝑖}

[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)] (1) 

     The SHAP technique approximates the Shapley value by performing Shapley sampling or 

Shapley quantitative influence to estimate 𝜙𝑖 from 2|𝐹| differences. According to this 

interpretation, the SHAP value for each variable may be established, and input parameters can 

be sorted according to their 𝜙𝑖 [29]. The SHAP value is the sole explanation approach 

supported by a sound theory and the most locally precise and consistent feature contribution 

value attainable. The most innovative technique for approximating SHAP values is Tree SHAP, 

which accurately computes Shapley explanations. It uses DT structures to separate each input's 

contribution in a DT or ensemble DT model [30]. A trained model is required as an input for 

the Tree SHAP technique, and for this study, our final model will stand in for the trained model. 

3.3. Gradient Boosting Decision Tree 

Gradient boosting is the most advantageous ML technique for classification and regression 

problems. It builds a prediction framework by combining weak prediction frameworks, 

primarily DTs [31]. The Gradient boosting decision tree (GBDT) technique uses Gradient 

boosting to extend and improve the classification and regression tree models. DTs are 

constructed iteratively by the GBDT algorithm. In each iteration, a DT is trained using the 

residuals from the preceding tree. Ultimately, the output is determined by accumulating the 

classified results of each tree [32].     
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Table 1: Description of the Parkinson Dataset with Replicated Acoustic Features 

Name of the group #Features Name of the features Min Max Average 

 

Standard 

Deviation 

 

 

Pitch local 

perturbation 

measures 

 

4 

Relative jitter, Absolute 

jitter, Relative average 

perturbation (RAP), 

Pitch perturbation 

quotient (PPQ) 

0.00 6.84 0.15 

 

0.13 

 

 

Amplitude 

perturbation 

 

 

5 

 

Local shimmer, 

Shimmer in dB, 3-point 

Amplitude Perturbation 

Quotient (APQ3), 5-

point Amplitude 

Perturbation Quotient 

(APQ5), 11-point 

Amplitude Perturbation 

Quotient (APQ11) 

0.00 1.75 0.09 0.02 

Harmonic-to-noise 

measures 
5 

HNR05 [0–500 Hz], 

HNR15 [0–1500 Hz], 

HNR25 [0–2500 Hz], 

HNR35 [0–3500 Hz], 

HNR38 [0–3800 Hz] 

22.22 129.99 71.78 342.05 

Mel frequency 

cepstral coefficient-

based 

13 
MFCC0, MFCC1, . . ., 

MFCC12 

 

 

0.57 

 

 

2.07 1.34 0.05 

Derivatives of Mel 

frequency cepstral 

coefficients 

13 
Delta0, Delta1, . . ., 

Delta12 
0.62 2.04 1.34 0.05 

Recurrence Period 

Density Entropy 

(RPDE) 

1 - 0.16 0.54 0.31 0.00 

Detrended 

Fluctuation Analysis 

(DFA) 

1 - 0.41 0.78 0.61 0.01 

Pitch Period 

Entropy (PPE) 
1 - 0.00 0.91 0.27 0.05 

Glottal-to-Noise 

Excitation Ratio 

(GNE) 

1 - 0.85 0.99 0.92 0.00 
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3.4. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a sophisticated supervised method presented by Chen 

and Guestrin inside the context of tree boosting, which boasts rapid, precise, efficient 

operations and strong generalizability [33], [34]. Data scientists frequently use it to produce 

state-of-the-art outcomes on various ML issues [35]. In fact, XGBoost is an enhanced version 

of the GBDT method [36], consisting of many DTs, and is commonly employed in 

classification and regression. However, XGBoost is distinct from GBDT in some ways. Firstly, 

XGBoost augments the loss function using a second-order Taylor expansion, whereas the 

GBDT method utilizes a first-order Taylor expansion [37], [38]. Second, the objective function 

uses normalization to prevent overfitting and simplify the approach [39], [40]. In other words, 

parallel and distributed computing contributes to a faster learning process [29]. The prediction 

functions for time step t are as follows: 

𝑓𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖) = 𝑓𝑖
𝑡−1 + 𝑓𝑡(𝑥𝑖)

𝑡

𝑘=1
 

      (2) 

 

     The depth and the number of trees are crucial factors for the XGBoost algorithm. The 

challenge of locating the optimal algorithm was recast as a new classifier that can lower the 

loss function, with the target loss function represented by (3) [41].   

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(�̅�𝑖, 𝑦𝑖) + ∑ 𝛺(𝑓𝑖)
𝑡

𝑘=1

𝑛

𝑘=1
 (3) 

where l is the loss function, n is the observation number, 𝛺 is the regularization term, which is 

expressed as: 

𝛺(𝑓) = 𝛾𝑇2 +
1

2
𝜆‖𝑤‖2 (4) 

where 𝜔 is the score vector, 𝜆 is the regularization parameter, and 𝛾 is the mini loss [42]. 

Several parameters must be modified before utilizing the model to optimize its performance 

and prevent excessive or insufficient fitting [43], [44]. 

3.5. Light GBM 

Microsoft introduced the Light Gradient Boosting Machine (LightGBM) method, which is now 

a popular open-source, distributed, high-performance Gradient-Boosting framework [45]. 

LightGBM is constructed using DT and histogram methods, which make data segmentation 

easier. LightGBM comprises the algorithms Gradient-based One-Side Sampling (GOSS) and 

Exclusive Feature Bundling (EFB) [46]. GOSS is a type of down-sampling strategy. During 

the model training phase, cases with more substantial gradients contribute more to the 
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information gain. Therefore, GOSS retains instances with significant gradients and randomly 

removes ones with slight gradients when down-sampling the data [47], [48]. Also, the EFB 

method seeks to reduce the number of features by grouping together several exclusive qualities, 

which can significantly reduce the number of needless calculations for zero feature values [49]. 

LightGBM, in contrast to typical level-wise methods, employs a leaf-wise approach with depth 

limiting to boost accuracy and prevent overfitting [50]. 

3.6. Bagging  

Bagging is an ensemble approach developed by Leo Breiman in 1994 [51]. It is defined by the 

production of multiple samples using bootstrap refitting from the same data set so that many 

different trees for the exact predictor can be constructed and used to develop an aggregate 

prediction [52]. Bagging tries to reduce variance while preserving the bias of a DT, to minimize 

overfitting, and to enhance the precision and consistency of ML algorithms [53]. 

3.7. Proposed Method  

In this section, the proposed approach for the diagnosis of PD is presented. In this approach, 

first, we determine the PCCs for each acoustic characteristic. We take into consideration a 

threshold, and the features whose absolute correlation value with the output is more than the 

threshold (i.e., 0.47) are the ones that are selected. Second, four classifiers, namely XGBoost, 

LightGBM, Gradient boosting, and Bagging, utilize the 32 selected features as input and 

classify the patients. Third, we use the Weighted Hard Voting Ensemble of the four classifiers 

in which the models' majority vote determines the classification based on different weights. 

Finally, we apply SHAP to the model so that it can assess the importance of features. Fig. 1 

depicts the general framework of the proposed method. 

4. Results and Discussion 

The proposed method was evaluated on Parkinson's Dataset with Replicated Acoustic Features. 

Several performance metrics, including precision, sensitivity, specificity, F1-score, and 

accuracy, were used to assess multiple ML models using the proposed methodology. According 

to the count of true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN), the following equations can be used to calculate mentioned evaluation metrics [54]:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

  

 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 
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Figure 1: The architecture of the proposed model 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (9) 

     In the initial phase of this methodology, to reduce classification time and improve classifier 

performance, the PCCs were computed for the entire dataset (Fig. 2). This method was utilized 

to comprehend the relationship between each feature and the output. The PCCs demonstrated 

that the four features, MFCC10, Delta11, HNR35, and HNR38, correlated highly with the 

output. In contrast, DFA, RPDE, Jitter_abs, and Gender features had a low correlation. We 

consider a threshold, i.e., 0.47, for evaluating highly correlated features. Consequently, 32 

features that correlated above that threshold are considered for the following phase.  

In the second phase, four candidate classifiers were applied to the dataset of 32 features 

acquired in the preceding step: XGBoost, LightGBM, Gradient boosting, and Bagging. When 

configuring XGBoost's hyperparameters, we discovered that it offered great flexibility. 

Consequently, the XGBoost parameters were acquired by trial and error, as shown in Table 2. 

On the other hand, using a histogram-based approach, LightGBM achieved a faster training 

speed and greater efficiency. Also, Bagging had the advantage of allowing a group of weak 

learners to outperform a single strong learner by combining their efforts. It assisted in reducing 

variance, hence preventing the overfitting of the model during the approach.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 
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Figure 2: Pearson Correlation Coefficients for Parkinson's Dataset 

 
Table 2: The XGBoost parameter setting 

Parameter Value 

Base learner Gradient boosted tree 

Tree construction learner Exact greedy 

Number of gradient boosted trees 94 

Learning rate (𝜼) 0.001 

Lagrange multiplier (𝜸) 0 

Maximum depth of trees 6 

 

                                

 
 
  
 
  
  
 

 
  
 
  

  
  
  
 
  
 

  
  
  
 
  
 

  
  
  
 
 
 
 

  
  
  
 
 
 
 

 
 
  

 
  
 

 
 
  

 
 
 

 
 
  

 
 
 
 
 

 
 
  

 
 
 
 
 

 
 
  
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 

 
  
  
 
 

 
  
  
 
 

 
  
  
 
 

 
  
  
 

          
      

          
          

          
          
        
       

         
         
         

     
     
     
     
     
    
   
   
   

     
     
     
     
     
     
     
     
     
     

      
      
      

      
      
      
      
      
      
      
      
      
      
       
       
       
      



 11 

Given that four classifier candidates performed reasonably well, we decided to use a Hard 

Voting Ensemble Method in the proposed strategy to improve its prediction accuracy further. 

To utilize the advantageous characteristics of each classifier to enhance accuracy, the 

weighting was set depending on each classifier's performance. Consequently, XGBoost, 

LightGBM, Gradient boosting, and Bagging acquired weights of 13, 6, 6, and 1, respectively. 

Finally, the majority vote of the classifiers determined the final prediction.  

To further strengthen this investigation and demonstrate the proposed method's robustness, 

we employed 4-fold cross-validation. Cross-validation is a methodology for resampling a 

dataset to evaluate machine learning algorithms using limited data samples [55]. The 4-fold 

cross-validation technique divides the dataset into four samples, analyzes the method for each 

sample, and estimates the dataset's average accuracy. 

Table 3 presents the comparison results of the proposed method with other classifiers in 

terms of accuracy, F1-Score, precision, specificity, and sensitivity. As can be seen, our 

proposed method outperformed other classifiers with an accuracy of 85.42%, F1-Score of 

84.94%, precision of 86.77%, specificity of 87.62%, and sensitivity of 83.20%. 

 

Table 3: Comparison of the proposed method with other classifiers 

Performance metrics (%) Model Folds-1 Folds-2 Folds-3 Folds-4 Average 

 

 

Sensitivity 

XGBoost 

LightGBM 

Gradient Boosting 

Bagging 

Proposed method 

77.77 

81.48 

77.77 

77.77 

77.78 

81.81 

84.84 

66.66 

75.75 

81.82 

87.50 

78.12 

87.50 

71.87 

87.50 

85.71 

85.71 

89.28 

82.14 

85.71 

83.20 

82.54 

80.30 

76.88 

83.20 

 

 

Specificity 

XGBoost 

LightGBM 

Gradient Boosting 

Bagging 

Proposed method 

81.81 

78.78 

81.81 

75.75 

81.82 

81.48 

85.18 

88.88 

85.18 

85.19 

92.85 

92.85 

85.71 

92.85 

92.86 

90.62 

81.25 

87.50 

87.50 

90.62 

86.69 

84.52 

85.98 

85.32 

87.62 

 

 

Precision 

XGBoost 

LightGBM 

Gradient Boosting 

Bagging 

Proposed method 

77.77 

75.86 

77.77 

72.41 

77.78 

84.37 

87.50 

88.00 

86.20 

87.10 

93.33 

92.59 

87.50 

92.00 

93.33 

88.88 

80.00 

86.20 

85.18 

88.89 

86.09 

83.98 

84.87 

83.95 

86.77 

 

 

F1-Score 

 

XGBoost 

LightGBM 

Gradient Boosting 

Bagging 

Proposed method 

77.77 

78.57 

77.77 

75.00 

77.78 

83.07 

86.15 

75.86 

80.64 

84.38 

90.32 

84.74 

87.50 

80.70 

90.32 

87.27 

82.75 

87.71 

83.63 

87.27 

84.61 

83.05 

82.21 

79.99 

84.94 

 

 

Accuracy 

XGBoost 

LightGBM 

Gradient Boosting 

Bagging 

Proposed method 

85 

83.33 

82.50 

82.08 

80 

85 

83.33 

81.67 

81.25 

83.33 

85 

83.33 

82.50 

80.83 

90 

85 

83.33 

82.50 

81.25 

88.33 

85 

83.33 

82.50 

81.25 

85.42 
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The confusion matrix was computed for each fold and overlapped for the final model, as 

illustrated in Fig. 3. The confusion matrix entries acquired in all folds develop the overlapping 

confusion matrix. The proposed architecture correctly identified 105 healthy individuals and 

100 PD patients. 

  

  

 
Figure 3: Confusion Matrix for proposed model 

  

     The extracted dataset was subjected to a SHAP analysis to assess the relative relevance of 

variables to construct a robust model. SHAP bar plot (Fig, 4) and SHAP beeswarm plot 

(Fig. 5) rank the acoustic features according to their relevance which is determined by the 

feature's mean absolute value across all samples. The fact that there are two Harmonic-to-noise 

ratio measurements (HNR38 and HNR35) out of five in the ranking demonstrates the 

significance of this feature category in diagnosing PD. Also, Glottal-to-Noise Excitation Ratio 

(GNE) demonstrated strong efficacy and ranked second. Moreover Delta0, MFCC9, MFCC1, 

MFCC10, Delta2, and Delta10 are amongst nine most important features. There is generally a 

strong correlation between these outcomes and Pearson Correlation assessments. 
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Figure 4: SHAP bar plot 

 
Figure 5: SHAP beeswarm plot    

     Table 4 summarizes the comparison results of the proposed method with Karabayir et al. 

[16]. Karabayir et al., achieved an 84.10% accuracy by using Parkinson Dataset with 

Replicated Acoustic Features. Our methodology achieved superior outcomes throughout all 

performance evaluation metrics except specificity. The good performance of the proposed 

method can be attributed to Hard Voting Ensemble Method, which integrates the beneficial 

characteristics of the four classifiers. The adjustability of XGBoost's parameters was a factor 

that contributed to its high accuracy. The high speed of LightGBM and the remarkable ability 

of Bagging to eliminate variance and minimize overfitting were among the factors that 

contributed to an increase in accuracy. 
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Table 4: Comparison of diagnostic validity of PD with other methods 

Study Classifier Specificity Sensitivity Precision F1-Score Accuracy 

 

 

Karabayir et al. [16] 

 

XGBoost 

 

Light GBM 

 

 

83.00 

 

84.40 

 

80.10 

 

83.90 

 

83.50 

 

85.30 

 

81.00 

 

83.90 

 

81.60 

 

84.10 

 

Proposed method 

 

 

Hard Voting Ensemble 

 

83.20 

 

87.62 

 

86.77 

 

84.94 

 

85.42 

 

     The Receiver Operating Characteristic (ROC) curve is one of the most important measures 

for evaluating the performance of a model. ROC measures classification ability at several 

threshold settings [56]. Therefore, we decided to compare the ROC curve of the utilized 

classifiers with the proposed method. In other words, it measures the power of a model to 

discriminate between various classes. The results are shown in Fig. 6, which also represents 

the area under the curve (AUC) in magnification-specific format. On the ROC curve, we can 

observe that our proposed model outperformed other classifiers. 

 

 

Figure 6: ROC curves of different classifiers 

5. Conclusion  
 

An early diagnosis approach is required since the prevalence of PD is developing. The 

diagnosis of PD is often made through motor symptoms or other Neuroimaging methods like 

DATSCAN, NMR-DTI, and SPECT. Given the constraints of these techniques, we utilized the 

voice recordings of people with PD, as many of them experience difficulties with their voices. 
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In this paper, ML algorithms play an essential role in diagnosing this disease. We initially 

utilized the PCCs to determine which input characteristics had a high correlation with the 

output. Consequently, the characteristics with the highest relation with the output were 

selected. In the following phase, these features were given as input to four candidate classifiers: 

XGBoost, LightGBM, Gradient Boosting, and Bagging. Furthermore, we used the Hard Voting 

Ensemble Method technique, which assigned weights to each classifier depending on its 

importance, and the majority vote of the classifiers determined the final prediction. The 

features were then ranked using SHAP to assess their relative importance. Our proposed 

method reached an accuracy of 85.42%, F1-Score of 84.94%, precision of 86.77%, specificity 

of 87.62%, and sensitivity of 83.20% for Parkinson Dataset with Replicated Acoustic Features.  

In future work, we would like to incorporate other feature selection techniques, such as 

ANOVA, to achieve higher performance. 
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