
Fuel Communications 13 (2022) 100078

Available online 18 September 2022
2666-0520/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modeling coking coal indexes by SHAP-XGBoost: Explainable artificial 
intelligence method 

A. Homafar a, H. Nasiri b,*, S.Chehreh Chelgani c,* 

a Electrical and Computer Engineering Department, Semnan University, Semnan, Iran 
b Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran 
c Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-971 87, 
Sweden   

A R T I C L E  I N F O   

Keywords: 
Free swelling index 
Gieseler plastometer 
Coal 
Explainable artificial intelligence 
Machine learning 
Modeling 

A B S T R A C T   

Coking coal is still on the list of critical raw materials in many countries since it is the main element integrated 
into the blast furnace. While the energy consumption and steelmaking efficiency in the furnace depends on the 
coke quality, understanding and modeling coking indexes based on their coal parent properties would be a 
substantial approach for the steelmaking industry. As an innovative approach, this short comminucation has 
been considered explainable artificial intelligence (XAI) for modeling coal coking indexes (Free Swelling index 
“FSI” and maximum fluidity “Log (MF)”). XAIs can convert black-box models into human basis systems and 
develop a significant learning performance and estimation accuracy. SHapley Additive exPlanations (SHAP), as 
one of the most recently developed XAI models in combination with eXtreme gradient boosting (XGBoost), were 
used to model coal samples from Illinois, USA. For the first time, FSI and Log (MF) treat as ordinal variables for 
modeling. Modeling outcomes relieved that SHAP-XGBoost could accurately show interdependency between 
features, demonstrate the magnitude of their multi relationships, rank them based on their importance, and 
predict the coking index quite accurately compared with conventional machine learning methods (random forest 
and support vector regression). These significant results would be opened a new window by applying XAI tools 
for controlling and modeling complex systems in the energy and fuel sectors.   

1. Introduction 

Although the steelmaking industry is one of the largest industrial 
sources of CO2 emission (~27% of global CO2 emissions), coking coal is 
extensively still used in the steel and ironmaking industry as an un- 
substitutable ingredient [1–3]. Approximately 0.7 tons of coking coal 
has to be used for each one-ton steel production. Since steel demand has 
expressively grown during the last few decades, coking coal has been on 
many countries’ critical raw material list [4]. The coal impurities can be 
mainly called as “Ash” markedly affect its coking ability [5], and 
decrease the coke productivity in the blast furnace [6]. It was predicted 
that by increasing each 1% of coal impurities, the coke productivity 
decreased by 2–3 wt% [7,8]. Free swelling index (FSI) (ASTM D720) [9] 
and maximum fluidity “Log (MF)” (gieseler plastometer) (ASTM D2639) 
[10] are the most known standard coking indexes, which have been 
widely used for coal coking quality assessments. The FSI as a qualitative 
factor classified coal samples into three categories: 0–2 (non-coking), 

<2–4 (medium), and <4–9 (the coking quality increases by rising the 
FSI). Gieseler plastometer could measure coal plasticity and determine 
its coke ability based on MF. Hadavandi & Chelgani (2019) indicated 
that there is a moderate positive correlation between log (MF) and FSI 
test results (by increasing FSI, log (MF) somehow is also increased) [11]. 
However, it was documented that various problems such as different 
particle size distribution of coal samples, frequent calibrating systems, 
heating rate, weathered samples, and different oxidation variability 
would limit the reproducibility and representability sociated with these 
coking index determinations [12]. These limitations would be priori-
tizing the modeling of coking indexes. 

It was well understood that coal rank parameters (moisture, volatile 
matter, carbon …) could affect their representative coking capability 
and significantly change it [13]. These effects could be complicated 
while the heterogeneous structure of coal makes several complex 
inter-correlations within its components [14,15]. Coal rank parameters 
can mainly be determined by proximate (ASTM D3172) [16] and 
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ultimate (ASTM D3176) [17] analyses. Since coking coal producers have 
to present both coal rank parameters and thermoplastic properties of 
their products, some investigations have been conducted to explore the 
possible models for assessing relationships between coal rank properties 
and their representative coking indexes. These models would be a key 
principle for the steelmaking industries to provide their desired coal 
blending, generating a high coke quality as a reductant agent and 
permeable support. 

Therefore, some statistical modeling approaches have been con-
ducted to tackle difficulties associated with coking index determination. 
Since FSI and log (MF) are qualitative factors, it was documented that 
common multivariable regression models cannot accurately model 
them. Thus, random forest [18], support vector regression [11], 
feed-forward artificial neural network [19,20], neuro-fuzzy inference 
systems [21], etc., as artificial intelligence (AI) methods (black box 
models) have been used for modeling them [22]. However, on the one 
hand, these black box AI and machine learning (ML) methods generally 
do not provide any insight into the magnitude of relationships among 
input data [23]. On the other hand, the coking index values of these 
models have been treated as nominal labels, whereas a closer study of 
the coal data revealed the fact that the output class is ordinal, and by 
utilizing the conventional AI and ML methods, some important infor-
mation would be lost that could potentially improve the model pre-
dictability. Therefore, it would be essential to consider a tool 
highlighting the individual and multivariable correlations of model 
features for these complicated indexes. 

Explainable Artificial Intelligence (XAI) is a recently developed 
machine learning that could address these shortcomings [24]. XAI 
models visualize relationships and their magnitude [25] and convert 
them into interpretable systems [26]. As the most recent XAI develop-
ment, SHapley Additive exPlanations (SHAP) [27]can provide insight 
into how black box AI and ML systems make estimations. As an inventive 
strategy based on the game theory, SHAP assists data scientists with the 
model development procedure by explaining the decision-making pro-
cess of the black box models [28]. SHAP can compute the contribution of 
each feature to the model’s output using Shapley values [29], highlight 
their magnitude, and rank features based on their importance [30]. 

As an innovative approach, this study will use SHAP to explore in-
terdependencies between various coal properties and their representa-
tive coking indexes through their modeling using eXtreme gradient 
boosting (XGBoost). XGBoost is one of the most recently developed ML 
models with several advantages over conventional AI and ML models. 
XGBoost is particularly flexible, can parallel process various learning 
scenarios, supports regularization, and handles missing data. For the 
first time, this work is going to examine the SHAP-XGBoost system for 
modeling coking indexes. As a comparative study, conventional ML 
models such as Random forest (RF) and support vector regression (SVR) 
were considered to evaluate the suggested system capability. The out-
comes of this work would be potentially suggested the application of 
SHAP-XGBoost as a powerful AI-based model for online and offline 
modeling of complex problems within coal and energy processing sys-
tems (such as modeling of Hardgrove grindability index (HGI), Gross 
Calorific value (GCV), vitrinite maximum reflectance (Rmax), etc.). The 
detailed list of abbreviations and acronyms used in the paper are shown 
in Table 1. 

2. Materials and methods 

2.1. Dataset 

Generally, a large database requires constructing a comprehensive 
soft computing model dealing with a complex problem, which may 
cause a severe challenge through the computation (challenges like; Lack 
of knowledge Professionals, Lack of proper understanding of Massive 
Data, Integrating Data from a Spread of Sources, Confusion while Big 
Data Tool selection, etc.) [31]. However, the most recent development 

in ML systems provided this opportunity to use datasets (instead of da-
tabases) to generate predictive models [32]. In this investigation for 
developing an accurate XAI model, a high-dimensional dataset was 
selected, covering a wide variation of coal and coking properties. A 
dataset with more than 100 records from Illinois was considered 
(Table 2) to construct an XAI for FSI and MF prediction. The modeling 
sequence was based on the diagram illustrated in Fig. 1. All the coal 
characteristics were determined based on ASTM procedures (ASTM 
D3172: proximate; ASTM D3176: ultimate; ASTM D720: FSI; ASTM 
D2639: Gieseler plastometer). Regarding ASTM D3172 and ASTM 
D3176 for coal proximate and ultimate analyses (respectively), the 
amount of fixed carbon and oxygen, which may incorporate the bias of 
other analyzed parts, did not consider as model input features (fixed 
carbon% = 100 - (moisture  + volatile matter + ash), and oxygen% =
100-(carbon + hydrogen + nitrogen + total sulfur)). 

2.2. Methodology 

2.2.1. SHapley additive exPlanations (SHAP) 
The SHapley Additive exPlanations (SHAP) technique facilitates the 

interpretation of model results by providing a uniform approach [33]. 
The SHAP value quantifies the effect of each component on model 
outputs, both for individual observations and the whole dataset. SHAP 
has an additive characteristic to ensure that the aggregate of all relevant 
measurements and baseline values adds up to the final output [34]. 
Linear addition of the input features produces the model’s output 
derived from game theory [35]. The "Shapley value" describes how 
much of a contribution each characteristic makes [36]. Even the most 
complicated models may be understood using SHAP’s methodology for 
understanding model predictions [37]. Even though numerous 
ML-based studies in solid materials have achieved great accuracy in 
predicting their targets, little attention is paid to the ML models’ inter-
pretability. Considerable study quantifies the relevance of features in 
tree-based models using the decision path, heuristic techniques, or 
model-agnostic approaches [38]. However, these approaches are 
frequently impractical and biased for Ensemble Machine Learning 
(EML) models, particularly those with a strong bias. In order to ensure 

Table 1. 
List of abbreviations and acronyms used in the paper.  

Abbreviation Definition Abbreviation Definition 

AI Artificial Intelligence ML Machine Learning 
DT Decision Tree RF Random Forest 
EML Ensemble Machine 

Learning 
SHAP SHapley Additive 

exPlanations 
FSI Free Swelling Index SVR Support Vector 

Regression 
GBDT Gradient Boosted 

Decision Tree 
XAI Explainable Artificial 

Intelligence 
Log (MF) Maximum Fluidity XGBoost Extreme Gradient 

Boosting  

Table 2 
The statistical description of coal samples and their representative coking 
indexes.  

Features Symbol Min Max Mean STD 

Moisture (%) Moist 0.50 18.20 9.35 4.43 
Volatile Matter (%) VM 27.40 48.20 40.03 3.60 
Ash (%) Ash 7.10 23.43 11.90 2.60 
Carbon (%) C 58.35 77.72 70.20 3.04 
Hydrogen (%) H 4.07 5.88 4.99 0.29 
Nitrogen (%) N 0.94 1.84 1.30 0.19 
Organic Sulfur (%) Organic S 0.37 2.82 1.59 0.59 
Pyritic Sulfur (%) Pyritic S 0.29 6.63 2.12 1.01 
Sulfate Sulfur (%) Sulfate S 0.01 0.40 0.05 0.06 
Free Swelling Index FSI 1.00 9.00 4.87 1.56 
Maximum Fluidity Log MF 0.00 4.45 1.87 1.19  

A. Homafar et al.                                                                                                                                                                                                                               



Fuel Communications 13 (2022) 100078

3

the interpretability of a machine learning model, the output is stated as 
the linear sum of the model’s input features multiplied by the appro-
priate SHAP values (Eq. (1)). 

f (x) = φ0 +
∑N

i=1
φiX

′

i (1)  

where f denotes the mapping function represented by the machine 
learning model; N represents the number of input features; φ0 is the 
average of all predictions; φi is the SHAP value for the i th feature; and X′

i 
denotes the coalition vector for the i th component, which can be 
calculated from the original input Xi using a mapping function 
expressed as Xi = hx (X′

i) [39]. Based on hypotheses such as efficiency, 
dummy, additive, and symmetry, the contribution of each feature (X 
denotes the assistance of the i th feature) could be determined by Eq. (2). 

ϕi =
∑

S⊆N\{xi}

|S|!(|N| − |S| − 1)!
|N|!

[V(S ∪ {xi}) − V(S)] (2)  

where S is the subset of N, which does not contain the feature i, and N 
denotes the entire set of features. The model V(S ∪ {xi}) is trained using 
S ∪ {xi}, but the other model V(S) is trained using S. Both models’ 

predictions are then compared using current input from subset S [40, 
41]. 

2.2.2. Extreme gradient boosting (XGBoost) 
Extreme Gradient Boosting (XGBoost) is a technique developed by 

Chen and Guestrin in 2016. For classification and regression tasks [42], 
XGBoost provides a parallel tree boosting extension to gradient boosted 
decision trees [43,44]. Indeed, it is an enhanced version of the 
well-established Gradient Boosted Decision Tree (GBDT) algorithm that 
overcomes its computing restrictions [45]. Nonetheless, it is distinct 
from the GBDT approach in a way. GBDT employs the first-order Taylor 
expansion, whereas the XGBoost’s loss function uses the second-order 
Taylor expansion [46,47]. For XGBoost, a sequential Decision Tree 
(DT) is formed using a technique known as a sequential ensemble 
approach [48], also known as sequential decision tree construction. 
Every sample in the dataset is given a weight, determining how likely it 
is to be picked for further examination by a decision tree. Initially, the 
weight for each data point is the same, but it varies due to the statistical 
analysis [49]. Processing large datasets (datasets from different areas: 
health [50,51], social security [52], earth science [53], …) with sig-
nificant characteristics and categorizations is also an everyday use for 
XGBoost. Additionally, this method provides practical and proficient 

Fig. 1. Modeling sequence for coking coal indexes.  
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solutions for novel optimization issues [54], particularly when effi-
ciency and accuracy trade-offs are taken into account [55]. XGBoost’s 
objective function is composed of the convex loss function and a regu-
larization term, as given in Eq. (3). 

Obj(θ) = L(θ) + Ω(θ) (3)  

where L(⋅) is the loss function and Ω(θ) = γT + 1
2 λ ‖ w‖2 is a regulari-

zation function, controlling the model’s complexity [56]. In the 

Fig. 2. SHAP feature dependence scatter plots for the XGBoost model to show the complexity of relationships between coal parameters.  
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regularization function, T represents the number of leaf nodes, and w is 
the weight of each leaf. γ and λ are regularization parameters that 
control the penalty associated with T and w [57]. 

2.2.3. Random forest 
Random Forest (RF) is a nonparametric supervised machine learning 

approach [58]. RF is a mix of Bootstrap aggregation (Bagging) and 
random variable selection at each node, which is developed by Breiman 
[59]. RF is an advanced bagging method created based on the Decision 
Tree (DT) theory [60,61]. The concept behind RF is to employ bootstrap 
resampling to extract numerous samples from the original data and then 
create a DT for each bootstrap sample [62,63]. Each DT is created 
randomly in an RF, and the DTs are utterly independent of one another 
[64]. Thus, there are many different predictors in an RF, and they are all 
grown separately. In order to arrive at a final prediction, individual tree 
projections are combined through the use of averages [65]. Given an 
input feature vector x = [x1, x2, .., xn]

T, the expected output of the RF 
model τ̂(x) could be computed according to Eq. (4). 

τ̂(x) = 1
B
∑B

b=1
τ̂b(x) (4)  

where Brepresents the total number of trees and τ̂b(x) denotes the es-
timate given by the b th tree [66]. To conclude, RF models are one of the 
most powerful supervised machine learning methods available today, as 
they enable the elimination of irrelevant input features based on their 
relative relevance [67]. 

2.2.4. Support vector regression 
Support Vector Regression (SVR) is a nonparametric statistical 

technique developed in 1996 by Drucker and colleagues [42]. Regres-
sion using SVR, has been utilized effectively on various engineering 
challenges [68]. SVR, a revolutionary artificial intelligence system, uses 
a promising nonlinear kernel-based regression approach to minimize the 
structural risk principle in a high-dimensional feature space imple-
mented in the SVR model. Using convex optimization methods, SVR 
transforms nonlinear regression problems into linear regression models 

[69]. The computational complexity of this approach is not reliant on 
the dimensions of the input space, which is one of its primary advantages 
[70]. Furthermore, it has a high level of accuracy in predicting outcomes 
and broad applicability [59]. The SVR uses Eq. (5) to solve the regres-
sion problem. 

f (x) = 〈w φ(x)〉 + b (5)  

where w denotes the weight of the matrix, φ(x) represents the multidi-
mensional space comprising the input vector x, and b is the bias [71]. 

3. Results and discussions 

3.1. SHAP assessment 

In this study, the SHAP was applied to the model built by XGBoost. 
SHAP analyses among proximate-ultimate analyses parameters (coal 
component) indicate the complexity of relationships between coal pa-
rameters (Fig. 2). Exploring multivariate relationships between these 
parameters and their representative coking indexes (FSI and log (MF)) 
showed that moisture and carbon contents have the highest effect on the 
coke capability of coal samples (Fig. 3). Moisture shows a significant 
negative and carbon a substantial positive correlation with the coking 
indexes (Fig. 3). Moisture is a coal rank factor since coal’s rank decreases 
as it increases. The negative effect of coal moisture in the blast furnace 
and coking rate was reported in other investigations [72,73]. In general, 
through airless heating of coal samples (coke-making procedure), their 
moisture content is released, leaving a solid residue called coke; thus, 
high moisture content could reduce the coking rate [14]. Since coke can 
be considered a macro-porous carbon material, the carbon content level 
absolutely plays one the most important role in its structure. In general, 
coke strength and reactivity tremendously should depend on its 
isotropic carbon content. Therefore, the weighty positive correlation 
between coking indexes and carbon content would be obvious. These 
relationships are even observed in other renewable fuels [74–78]. There 
is a significant agreement between SHAP and Pearson correlation as-
sessments (Fig. 4). 

Fig. 3. SHAP feature importance of coal features on the coking indexes for the XGBoost model. Red and blue bars indicate the positive and negative impact of the 
features on the output. 
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3.2. Prediction 

XGBoost was considered for the perdition of coking index features. 
From the entire provided dataset, 80% of records were randomly used as 
the training set, 10% as the validation set, and the remaining 10% as the 
test set. The XGBoost hyperparameters were selected by try and error 
approach based on the Grid Search algorithm (Table 3). The XGBoost 
outcomes (Table 4) indicated that the coking indexes could be accu-
rately estimated by using coal properties. The same records were 
considered for comparison determinations to develop RF and SVR as 
conventional ML models. Outcomes (Table 4) highlighted that the 
XGBoost algorithm could predict the coking indexes quite accurately 
compared to these two common AI models (Fig. 5). Moreover, to 
determine whether XGBoost’s superiority was statistically significant, a 
two-tailed Welch’s t-test with a significance level α = 0.05 was con-
ducted between XGBoost and other methods. Welch’s t-test, a 
nonparametric univariate statistical test, is useful when two samples 
have unequal variances [79]. As seen in Table 4, in all comparisons, the 
null hypothesis is rejected based on the tests with a 95% confidence level 
(p-value < 0.05), giving statistically significant results. 

Fig. 4. Linear relationships (Pearson correlation) between coal characteristics and their representative coking indexes.  

Table 3 
The XGBoost parameter settings for predicting coking indexes.  

Parameter Value (Log MF) Value (FSI) 

Base learner Gradient boosted 
tree 

Gradient boosted 
tree 

Tree construction algorithm Exact greedy Exact greedy 
Learning objective Regression with 

squared loss 
Regression with 
squared loss 

Learning rate (η) 0.3128 0.4407 
Lagrange multiplier (γ) 0 0 
Number of gradients boosted trees 77 13 
Maximum depth of trees 3 3 
The minimum sum of instance weight 

(hessian) needed in a child 
0 0 

L2 regularization term on weights 1 1 
The initial prediction score of all 

instances (global bias) 
0.5 0.5 

Subsample ratio of the training 
instances 

0.9999 0.9999 

Maximum delta step, we allow each 
leaf output to be 

0 (There is no 
constraint) 

0 (There is no 
constraint)  
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It is worth considering that both RF and XGBoost are ensemble 
models which provide accurate results (SVR is a kernel-based regres-
sion). However, XGBoost is a boosting technique requiring less feature 
engineering, and RF is a bagging model, making XGBoost more adapt-
able than others [80]. During using XGBoost, the user can customize the 
objective function. Most SVR modeling shows a significant performance 
when a high dimensional space is available due to the kernel trick. In 
terms of training computational cost, XGBoost is cheaper than RF by 
implementing parallel processing [81], while SVR is one of the most 
computationally expensive algorithms to train. Although XGBoost is 
computationally efficient in training, it can be computationally costly in 
tuning due to its many hyperparameters. It is worth noting that one of 
the strengths of all three methods is that they make no assumptions 
about the distribution of the input features [82]. Regarding the bias and 
variance, RF and XGBoost mainly showed a low bias and variance; 
however, SVR indicated low bias and high variance [83]. As a sub-
stantial XAI system, the high accuracy of the constructed SHAP-XGBoost 
model indicated that this combination could successfully be applied for 
developing, modeling, and maintaining complex relationships within 
the coking and steelmaking industries. 

4. Conclusion 

Outcomes of this investigation highlighted that by using SHAP as an 
algorithm to build an explainable artificial intelligence model, complex 
multivariable correlations within coal properties and their representa-
tive coking indexes could be distinguished, and their multivariable 
correlation magnitude can be converted to the human basis level. SHAP 
indicated that with the dataset (coal sample’s ash content is lower than 
25%), moisture and carbon content has the highest importance for 
predicting coking indexes. There is a positive correlation between car-
bon content and coking quality, while moisture showed a significant 
negative correlation. XGBboost, a most recent developed boosting 
technique, could accurately predict coking indexes by R2 over 0.9 in the 
validation and over 0.8 in the testing stages. Comparing the results of 
conventional machine learning methods (random forest and support 
vector regression) and SHAP-XGBoost models relieved that this model 
could provide a higher accuracy (R2 0.9 vs. 0.8 in the validation, 0.8 vs. 
0.6 in the testing step). The success of SHAP-XGBoost in modeling 
coking indexes could be considered a new window for better under-
standing complex relationships and predicting complicated factors 
within energy and fuel processing areas. 
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