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A B S T R A C T
Background and Objective: Since gastric cancer is growing fast, accurate and prompt diagnosis is
essential, utilizing computer-aided diagnosis (CAD) systems is an efficient way to achieve this goal.
Using methods related to computer vision enables more accurate predictions and faster diagnosis,
leading to timely treatment. CAD systems can categorize photos effectively using deep learning
techniques based on image analysis and classification.
Methods: Accurate and timely classification of histopathology images is critical for enabling imme-
diate treatment strategies, but remains challenging. We propose a hybrid deep learning and gradient-
boosting approach that achieves high accuracy in classifying gastric histopathology images. This
approach examines two classifiers for six networks known as pre-trained models to extract features.
Extracted features will be fed to the classifiers separately. The inputs are gastric histopathological
images. The GasHisSDB dataset provides these inputs containing histopathology gastric images in
three 80px, 120px, and 160px cropping sizes. According to these achievements and experiments, we
proposed the final method, which combines the EfficientNetV2B0 model to extract features from the
images and then classify them using the CatBoost classifier.
Results and Conclusion: The results based on the accuracy score are 89.7%, 93.1%, and 93.9% in
80px, 120px, and 160px cropping sizes, respectively. Additional metrics including precision, recall,
and F1-scores were above 0.9, demonstrating strong performance across various evaluation criteria.
In another way, to approve and see the model efficiency, the GradCAM algorithm was implemented.
Visualization via Grad-CAM illustrated discriminative regions identified by the model, confirming
focused learning on histologically relevant features. The consistent accuracy and reliable detections
across diverse evaluation metrics substantiate the robustness of the proposed deep learning and
gradient-boosting approach for gastric cancer screening from histopathology images. For this purpose,
two types of outputs (The heat map and the GradCAM output) are provided. Additionally, t-SNE
visualization showed a clear clustering of normal and abnormal cases after EfficientNetV2B0 feature
extraction.

The cross-validation and visualizations provide further evidence of generalizability and focused
learning of meaningful pathology features for gastric cancer screening from histopathology images.

1. Introduction
Gastric cancer is a leading cause of worldwide cancer

mortality [1], with an exceptionally high rate in Asia, Eastern
Europe, and Central America [1]. According to the recent
Global Cancer Statistics, more than 768,000 deaths occurred
out of 1 million cases in 2020, making gastric cancer the
fifth most frequently diagnosed cancer and the third cause
of cancer-related deaths worldwide [2]. With the rapid ad-
vancement of computer vision technology, particularly with
the development of medical image classification, it is now
possible to quickly and effectively examine every micro-
scopic photo [3], [4].

Hardware advancements in Graphical Processing Units
(GPUs) have also improved Convolutional Neural Network
(CNN) performance. These developments were applied in
various medical fields. [5],[6].

The broad utilization of Convolutional Neural Networks
(CNNs) which possess the ability to autonomously extract
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local features for classification purposes [7], in picture
recognition came around after Krizhevsky et al. [8]. Ap-
plications of CNN are used in various fields; some of their
most critical applications are in image and signal processing,
natural language processing, and data analytics [9]. Since
patients unaware of the nature of their illness often seek gen-
eral practitioners instead of specialists. Loss of human lives
can be anticipated, or the therapeutic trauma experienced in
harm or an infection can be decreased through the timely
diagnosis of medical anomalies. Medical anomalies include
glaucoma, diabetic retinopathy, and tumors [10]. The anal-
ysis of histopathological images by pathologists is time-
consuming and needs excessive expenditures. Additionally,
the manual process carries a significant risk of classification
errors due to resource mismatches, demanding tasks, and
human errors [11]. Consequently, the timely diagnosis and
early detection of cancer assume paramount significance in
ensuring effective treatment and maximizing the potential
for a successful cure [? ]. The ability to solve this problem
appropriately and extend the survival rate is aided by early
diagnosis of this condition. ML and Deep Learning (DL)
provide reliable and efficient methods for developing intelli-
gent data-driven systems in our technological era [12],[13].
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Computer-aided Diagnosis (CAD) provides the possibility
to gain ML and DL facilities to identify border detection,
extraction, and classification operations [14],[15]. By pur-
suing this avenue, pathologists can anticipate a reduction
in work pressures, enhanced diagnostic efficiency, and im-
proved overall reliability within their professional practice
[4].

Therefore, we proposed a method that can detect Gastric
cancer with high speed and accuracy and eliminate any
human intervention.

In this paper, the classification problem is considered
with the help of image processing. Since our dataset is
the GasHisSDB, we focus on classifying two normal and
abnormal types of gastric cancer, DL models are coming up
to diagnose tumor type. So, in this investigation, we will pro-
vide a model using these algorithms to improve the model’s
performance to get higher accuracy and better classification.
The idea is to prepare the raw images to feed into the CNN-
based networks, and then get some important features from
the image that play an important role in diagnosing the image
class. These features are hidden in the images which can not
be diagnosed by human eyes and logic. According to the
task which is a binary classification, we need to feed these
valuable features to the classifier to predict the labels. In this
phase, the vital issue is to tune the classifier parameters to
perform better in classifying. In the end, we need to verify
our model by implementing some experiments to ensure our
findings perform well in multiple aspects. We aim to increase
the accuracy of the previous models compared with the other
papers related to the GasHisSDB dataset and gastric cancer.
This paper will present a pre-trained deep-learning model
for the extracting feature job and gradient-boosting method.
This way, multiple combinations of DL models and gradient
boosting methods are examined to choose the best model
based on the accuracy score.

While prior studies have explored various computer
vision and machine learning techniques for gastric can-
cer detection, this work puts forth a novel approach that
combines the strengths of deep learning feature extraction
with gradient boosting for enhanced classification perfor-
mance. Specifically, we investigate various pre-trained mod-
els, the state-of-the-art CNN architecture optimized for ac-
curacy and efficiency, for automated feature extraction from
histopathology images. The extracted features are then clas-
sified using CatBoost and LightGBM algorithms, recently
developed gradient-boosting algorithms shown to deliver top
results across various structured data tasks. Compared to
existing methods that rely on hand-crafted features or single
model architectures, our hybrid deep learning and gradient
boosting framework achieves significantly higher accuracy
in distinguishing between normal and abnormal gastric tis-
sue. To the best of our knowledge, this demonstrates the
power of fusing efficient deep CNNs and advanced boosting
techniques for this application. The proposed model’s inter-
pretability is also analyzed through visualization techniques
such as ROC curves, learning curves, t-SNE projection, and
Grad-CAM implementation. Overall, this work introduces

an innovative pipeline that advances gastric cancer detection
from histology images.

This research will answer two essential questions: 1)
How does the final method detect gastric cancer? 2) How
do pre-trained models extract features and prepare them for
classification?

Answering previous questions is inside the body of the
following topics: In Section 2, we will go deeper to explain
our final method and its components. Section 3 will present
our results and experiments around the proposed model. At
the end of this section, a brief discussion will be done to un-
derstand better what has been done. Summarizing the paper
around the results and the achievements will be organized
in Section 4. In the end, we discuss some limitations and
constraints around our approach and recommend solutions
to cover them in Section 5.

2. Related Works
In light of the emergence and advancement of ML,

artificial intelligence, and DL, numerous research institu-
tions have undertaken diligent investigative endeavors [? ].
Also, in recent years, many researchers have been exploring
various methods to diagnose gastric cancer more rapidly
than human beings. According to this trend, scientists used
available datasets about gastric cancer provided by health
organizations and laboratories.

In the following, we aim to compare some related pa-
pers employed by multiple researchers on different datasets
around gastric cancer before presenting our final proposed
method. The details of these efforts are introduced as fol-
lows:

Since the research on auto-classification of gastric
pathology images is valuable,, Bo et al. in 2018 presented
a method for automatically detecting gastric tumor images
according to DL algorithms. They used an identity map-
ping technique to create a deep residual network with 50
layers from a dataset of gastric cancer pathology images
divided into two types. The suggested approach accelerates
model training while enhancing generalization performance,
achieving a high score of 96% on the F-score evaluation
criteria [16].

In an investigation employed in 2019, Wang et al. de-
signed a recalibrated multi-instance DL method (RMDL)
for gastric cancer diagnosis. Their proposed framework was
evaluated on the gastric Whole Slide Images (WSI) dataset.
The mentioned model for multiclass cases was 86.5% accu-
rate [17].

Due to the high death rate, another study on the rapid
diagnosis of stomach cancer was initiated in 2019. Horiuchi
et al. improved a new technique, “magnifying endoscopy
with narrow band imaging” (ME-NBI). To progress in this
technique, they use the facilities of CNNs for classifying the
input image. They were followed to enhance the detection of
gastritis and EGC using the ME-NBI technique. They use a
22-layer CNN network on EGC, and gastritis images are split
into test and train data. Based on the results of this study in
2019, the CNN system with ME-NBI achieved an accuracy
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of 85.3%, demonstrating excellent sensitivity and NPV in
distinguishing between gastritis and EGC [18].

Following the previous research in 2020, Song et al. built
a new CNN based on DeepLabv3 and ResNet50 to diagnose
gastric cancer. Their model was evaluated on the PLAGH
dataset, and the accuracy of the model is 87.3% [19].

Lizuka continued research on this type of cancer by train-
ing CNNs and recurrent neural networks (RNNs) on biopsy
histopathology (WSIs) for Histopathological classification
of gastric and colonic epithelial tumors. Most of their dataset
originated from Hiroshima University Hospital, and the rest
developed from Haradoi Hospital [20].

In 2020, an investigation was done to analyze gastric
cancer’s histological image. Shiliang et al. introduce fea-
ture extraction approaches, review picture preprocessing
techniques, and generalize segmentation and classification
methods already in use. This paper studied multiple feature
extraction methods, analyzed in two ways: ML approach and
DL algorithms. Another analysis was performed in image
preprocessing to increase the data provided in a dataset. The
research shows how preprocessing helps to avoid overfitting
and makes the results much more precise. Since classifica-
tion plays a vital role in every image analysis, this study
applied some classifiers like SVM, RM, and pre-trained
models based on CNNs such as ResNet and Inception-
V3. The framework structure combines DL algorithms to
extract features and classifiers to do classification tasks. It is
necessary to mention that postprocessing and segmentation
methods are examined in this investigation [21].

In 2021, Li et al. proposed a random field based on
Attention Mechanism (HCRF-AM), which consists of an
Attention Mechanism (AM) module and an Image Classifi-
cation (IC) module which has a CNN that is trained with the
attention regions selected. A dataset containing 700 gastric
histopathology images is used to build and evaluate this
model. The mentioned model was 91.4% accurate on the
testing images [22].

One of the numerable studies on the GasHisSDB dataset
was performed by Weiming Hu et al. in 2022. They choose
seven different classical ML algorithms to extract five other
image virtual features to match multiple classifier algo-
rithms. Their study was done on binary classification, di-
vided into normal and abnormal classes. In feature extrac-
tion, methods such as color histograms, Luminance his-
tograms, Histograms of Oriented Gradient (HOG), Local
Binary Patterns (LBP), and Gray-level Co-occurrence Ma-
trix (GLCM) were examined. The features were passed to
the seven multiple classical classifications: linear regression,
KNN, Random Forest, linear SVM, non-linear SVM, naïve
Bayesian classifier, and ANN. The final proposed method in
the ML approach combines the color histogram and Ran-
dom Forest with 85.99% accuracy. It should be noted that
Weiming et al. also calculated four other evaluation metrics:
Precision, Recall, Specificity, and F1-Score [23].

In the latest research, Noda et al. developed a CNN-based
system for diagnosing early gastric cancer, which is trained

on the training dataset comprising 1623 images. In the per-
lesion analysis, the accuracy of the CNN-based findings was
86.1% [24].

A recent study by Hu et al.[23] in 2022 explored gas-
tric histopathology image classification on the GasHisDB
dataset using both traditional machine learning and deep
learning techniques. They extracted handcrafted features
like LBP, HOG, and GLCM to feed into linear regression,
SVM, random forest, and other shallow models. Addition-
ally, they evaluated state-of-the-art convolutional neural net-
works including ResNet50 and visual transformers. Their
work focused only on the 160px resolution images. How-
ever, our study explores a wider range of image resolutions
and proposes a novel deep CNN feature extractor paired
with gradient boosting for enhanced performance across
evaluation metrics. The advanced representations learned by
our approach contribute uniquely to gastric histopathology
analysis.

In this segment, we have sought to compile existing stud-
ies centered on the diagnosis of gastric cancer. Our emphasis
in introducing and scrutinizing these selected papers lies in
their shared focus on improving the diagnostic capabilities
for this particular cancer by applying diverse models. No-
tably, a prevalent theme across these investigations involves
the utilization of ML and DL methodologies. This alignment
underscores a commonality between our study and prior
research endeavors. Our primary objective is to develop an
effective model grounded in CNNs to elevate accuracy and
other pertinent metrics in the detection of gastric cancer.

3. Materials and Methodology
3.1. Dataset

The GasHisSDB dataset [25], was employed to evalu-
ate the proposed algorithm. This dataset includes 245,196
gastric histopathology images, consisting of 97,076 abnor-
mal and 148,120 normal images of patients respectively.
GasHisSDB contains pictures in PNG format obtained by
electron microscopy. For more details of the dataset, you can
see Table 1. Also, in Figure 1, we represent sample images
of every cropping size for both abnormal and normal classes.

Table 1
Distribution of the images in the GasHisSDB dataset [25]

Cropping size Abnormal Normal
160px 13,124 20,160
120px 24,801 40,460
80px 59,151 87,500
Total 97,076 148,120

3.2. Methodology
This study classifies gastric cancer into two main classes:

abnormal and normal tumors. In a nutshell, the suggested
method is used for the classification task mentioned ear-
lier, as demonstrated in Figure 2 which provides a visual
representation of the approach. As demonstrated by this
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(a) Normal (80px) (b) Normal (120px) (c) Normal (160px)

(d) Abnormal
(80px)

(e) Abnormal
(120px)

(f) Abnormal
(160px)

Figure 1: Samples of normal (a-c) and abnormal (d-f) tumor types in all cropping sizes. (Source: GasHisSDB dataset [25])

architecture, we used pre-trained models, which have been
trained on 14 million images before, to extract features from
the images. These new DL models are not feature extractors
by themselves. So, a change is needed to transform them
into extracting elements. This change is implemented by re-
moving fully connected layers, which classify images based
on features extracted by convolutional layers, and adding
another classifier to the network. To deploy this concept, we
removed the last layer of these models, known as the pre-
diction layer. The images are fed into six various networks.
Image preparation was possible using the OpenCV module
and the deep learning pipelines were implemented in Python
using Tensorflow and Keras. Model training and evaluation
were performed on an NVIDIA Tesla T4 GPU with 16GB
memory. After extracting features from each of these net-
works, the extracted and grouped features enter into a noble
gradient boosting algorithm. CatBoost and LightGBM are
two state-of-the-art algorithms that classify data into main
classes. The images of the GasHisSDB dataset are divided
into two sets: training (80% of the dataset) and testing (20%
of the dataset). A total of 245,196 samples were used for
training and testing, with 196,155 samples used for training
and 49,041 samples used for testing.
3.3. Data Pre-processing

To prepare data for doing some operations, we under-
stand that data pre-processing plays an essential role in data
science issues. Valid data analytics are built on top of data
pre-processing. Given the inherent complexity of building
operations and flaws in data quality, it is a crucial stage in
establishing operational data analysis [26].

The data pre-processing task in this study involves resiz-
ing images to a specific dimension. Since we are supposed
to feed data into the networks, the size of images should be
224×224×3 pixels. The method we utilized to do the scaling
better without losing special information is linear interpola-
tion known as bilinear interpolation. This method calculates

the output pixel values when transforming an input image
to a new size. For each output pixel location, bilinear inter-
polation identifies the nearest 2x2 neighborhood of pixels
in the input image. Based on the weighted distances of the
output pixel from each of these 4 neighboring pixels, their
color values are blended together using linear interpolation
to compute the output pixel color. Bilinear interpolation
provides a good balance between resizing performance and
computational complexity for most applications such as
medical usage.

Although data pre-processing describes a collection of
methods for improving the original data quality [26], in this
study data pre-processing only involves resizing the images
using the bilinear interpolation technique.
3.4. Feature Extractor

As mentioned before, to transform a Feature extractor,
removing the last layer of the network is necessary. So
it provided the possibility to use features extracted by a
network with a large dataset and a different classification
method in various models [27]. In the Definition of feature
extraction, as taken after: "Feature extraction is generally
used to mean the construction of linear combinations 𝑇𝑥 of
continuous features which have good discriminatory power
between classes" [28]. Feature extraction is the method of
converting the information into numerical values, which
may be an exceptionally vital step for identification and
visualization purposes [29]. This method performs a few
changes of unique highlights to create other highlights that
are more critical [30].

We used six profound learning pre-trained models for
information extraction, including ResNet50, VGG16, Effi-
cientNetV2B0, InceptionV3, Resnet101, and DenseNet201.
Two fundamental parameters ought to be initialized: sort
of the pooling and barring the final layer. First, we briefly
explain the network that achieved higher accuracy from the
dataset and our proposed model obtained from this network
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Figure 2: The architecture of the proposed model. (The original and resized images are extracted from the GasHisSDB dataset
[25])
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EfficientNetV2: This model takes 224×224RGB pictures
as input. EfficientNetV2 is a modern family of convolu-
tional systems that have faster training speed and superior
parameter efficiency than past models [31]. Training-aware
neural design search and scaling have been utilized in the
improvement to optimize preparing speed and parameter
efficiency for this model mutually. It employs depthwise
separable convolutions which apply a single convolutional
filter per input channel, reducing computations compared to
standard conv layers. This is followed by a 1x1 pointwise
convolution to integrate cross-channel information

In CNN, pooling layers are included primarily for down-
inspecting the highlight maps by accumulating highlights
from neighborhood locales. Pooling can help CNN to mem-
orize invariant highlights and diminish computational com-
plexity [32]. The max and the average pooling are the
broadly utilized Pooling [32]. The average pooling may
be more fitting for a few other scenarios, e.g., classifying
unusual pictures from ordinary ones where the variation
from the norm spreads all over the irregular image [32]. So,
the average pooling method was chosen for all six pretrained
models. The number of features obtained before and after
setting the pooling method based on each network is shown
in Table 2.

At that point, the final layer which was arranged to
foresee dataset classes, was evacuated. To store features
extracted in memory at first, we used a regular array to
store the extracted features in the memory. Still, due to the
memory limitation and the considerable number of dataset
images, the memory capacity needed to be increased to save
all the features extracted from the relevant network, so the
NumPy library was used to store the extracted features in
memory due to the memory limitations and the large number
of dataset images. Also, since this dataset contains many
images, we needed a lot of time to extract the features, so
the extracted features were saved in text files every 5,000
features to manage the large number of images and the
extraction time.

While this work employed fixed pre-trained parameters
for the deep learning feature extractors, further fine-tuning
of the networks on medical images could potentially improve
results. The pre-trained models used like EfficientNetV2B0
were initially trained on general image datasets such as Im-
ageNet which do not contain medical images, While studies
such as our investigation would demonstrate how well these
pre-trained networks perform on medical image datasets like
GasHisSDB dataset. Fine-tuning the models by continuing
the backpropagation training on gastric histopathology im-
ages may allow the networks to learn more relevant features
tailored to this medical domain which could be considered
in the next studies on medical image classification.
3.5. Classifier
LightGBM: LightGBM [35], a light gradient-boosting
machine, is an open-source and different gradient-boosting
algorithm that employs decision trees. The LightGBM
method can be used in other approaches, such as the medical

Table 2
The number of features obtained before and after pooling

Feature Extractor Average pooling Without pooling
VGG16 [33] 512 7 × 7 × 512

DenseNet201 [34] 1920 7 × 7 × 1920
ResNet50 [35] 2048 7 × 7 × 2048
ResNet101 [35] 2048 7 × 7 × 2048
InceptionV3 [36] 2048 5 × 5 × 2048

EfficientNetV2B0 [31] 1280 7 × 7 × 1280

field, to assist doctors in providing an accurate and speedy
medical assessment. Since the LightGBM model grows pri-
marily horizontally and the tree depth does not significantly
rise, over-learning can be avoided, so this feature tends to get
a better outcome [37]. Because LightGBM generates more
complex trees than the current tree-boosting algorithms, it is
a more accurate decision tree algorithm [38]. Studies show
that LightGBM is 20 times faster than any other gradient-
boosting method in learning because of using GOSS and
EFB algorithms. According to their absolute gradient values,
the training data are ranked in descending order in the GOSS
method. The data amplifying is more strongly influenced
by the data with more extensive gradients. Since segmented
instances are available, for variance evaluation gain of data
point 𝑗 to point 𝑑 the below formula is considered.

𝑣𝑗 (𝑑) =
1
𝑛

(

(

∑

𝑥𝑖 𝜖 𝐴𝑖
𝑔𝑖 +

1−𝑎
𝑏

∑

𝑥𝑖 𝜖 𝐵𝑙
𝑔𝑖
)2

𝑛𝑗𝑙 (𝑑)
+

(

∑

𝑥𝑖 𝜖 𝐴𝑟
𝑔𝑖 +

1−𝑎
𝑏

∑

𝑥𝑖 𝜖 𝐵𝑟
𝑔𝑖
)2

𝑛𝑗𝑟 (𝑑)

)

(1)

• 𝑥𝑖 is the 𝑖𝑡ℎ sample of the training dataset.
• 𝑔𝑖 is the negative gradient of the loss function.
• 1−𝑎

𝑏 normalize the sum of gradients.
• 𝐴𝑙 =

{

𝑥𝑖 ∈ 𝐴 ∶ 𝑥𝑖,𝑗 ≤ 𝑑
}

, 𝐴𝑟 =
{

𝑥𝑖 ∈ 𝐴 ∶ 𝑥𝑖,𝑗 > 𝑑
}

• 𝐵𝑙 =
{

𝑥𝑖 ∈ 𝐵 ∶ 𝑥𝑖,𝑗 ≤ 𝑑
}

, 𝐵𝑟 =
{

𝑥𝑖 ∈ 𝐵 ∶ 𝑥𝑖,𝑗 > 𝑑
}

The features’ complexity is decreased through the EFB
method, which also expedites model training. The EFB
approach combines multiple components into a single one. It
reduces the LightGBM computing difficulty from 𝑂(# data
∗ # feature ) to 𝑂(# data ∗ # bundle ) which #𝑏𝑢𝑛𝑑𝑙𝑒 is
much less than #𝑓𝑒𝑎𝑡𝑢𝑟𝑒. So, this leads to a new high speed
without losing accuracy. The result of using these algorithms
to improve LightGBM can be given from the formula below.

𝐹𝑀 (𝑥) =
𝑀
∑

𝑚=1
ℎ𝑚(𝑥) (2)
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• 𝑀 : the maximum number of iterations.
• ℎ𝑚(𝑥): the base decision tree.
In LightGBM, two methods (leaf-wise and level-wise)

are utilized for growing decision trees, making this algo-
rithm different from others [35]. According to [37], Light-
GBM brings more accurate predictions for medical classifi-
cation.
CatBoost: CatBoost is a new gradient-boosting technique
for the problem of prediction proposed by Prokhorenkova et
al. (2018) and Dorogush et al. (2018) [39]. CatBoost per-
forms differently from other gradient-boosting algorithms.
This algorithm begins with ordered boosting, an adequate
adjustment of gradient boosting algorithms, to overcome the
issue of target leakage [39] CatBoost machine is considered
one of the foremost effective machines [40]. During the
last few years, it has been used for various issues within
arranged frameworks such as pharmaceuticals, science, and
natural chemistry [40]. In addition, CatBoost uses an or-
dered boosting method Instead of the traditional gradient
boosting algorithm for gradient estimation which pre-sorts
training data to avoid repeatedly resorting during tree con-
struction. Categorical features are processed using a novel
permutation-driven approach to handle categoricity. These
enhancements accelerate the gradient boosting process com-
pared to XGBoost [41],[39].

For each of the six feature extraction networks per every
sub-size, we found optimal parameters for better perfor-
mance of CatBoost. The values tested to obtain the best
parameters are as follows: For the number of iterations,
the dimension is tuned from 100 to 1000 every 100 steps;
moreover, for the number of splits for the numerical features
parameter, values of 5, 10, 20, 30, 50, 100, and 200 were
tested, also, we tried the values of 1,3,5,10, and 100 for the
regularizing to find the best possible parameter. For setting
the depth parameter, the dimension is tuned from 1 to 11.
For setting the minimum number of training samples in a
leaf parameter, the measurement is adjusted from 1 to 100.

4. Results and Discussion
4.1. Evaluation Criteria

In the following section, we calculated five metrics to
evaluate our proposed method. Mainly, we focus on ac-
curacy, but precision, recall, specificity, and 𝐹1 − 𝑆𝑐𝑜𝑟𝑒
are used to get a better view of the proposed method’s
performance. In the classification problem, if an image is
predicted to its category, it is known as a positive classi-
fication, otherwise known as negative. Hence, we have TP
(True-Positive), TN (True-Negative), FP (False-Positive),
and FN (False-Negative). Despite having these, we are easily
able to calculate the mentioned metrics which are defined as
follows:

𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(6)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 1

2 (𝐹𝑃 + 𝐹𝑁)
(7)

4.2. Results
We used the different combinations of DL models

and gradient boosting methods to get better classification
based on accuracy score. In this paper, we deploy six pre-
trained models to extract features from images. Then, two
gradient-boosting algorithms are used to do the classification
duty. ResNet50, VGG16, EfficientNetV2B0, InceptionV3,
Resnet101, and DenseNet201 pre-trained models are exper-
imented with as feature extractors. All pre-trained models
are based on CNN models, which have been tested before.
In Table 3 below, some hyperparameter values are set after
fine-tuning the LightGBM algorithm to get higher accuracy.

Table 3
LightGBM hyperparameters setting

sub-size Max number
of leaves

Minimal number
of data

Max number
of bins

Limit the
max depth

Minimal sum
hessian Accuracy (%)

160px 53 250 12 8 20 92.84
120px 82 500 6 14 25 92.26
80px 35 500 15 8 48 89.06

The values of the parameters that led to the best accuracy
obtained by the Catboost algorithm are given in Table 4.
In Figure 3, we illustrated the impact of varying CatBoost
parameter values on the accuracy metric. The figure demon-
strates a systematic progression of the parameter effects,
indicating that the addition of each parameter, along with its
corresponding value, results in an incremental improvement
in the accuracy score.

Table 4
CatBoost hyperparameters setting

sub-size Number of
iterations

L2
regularization Depth Border

count

Number of
training
samples

Accuracy (%)

160px 700 3 6 5 1 93.99
120px 900 5 6 20 1 93.18
80px 900 10 8 30 1 89.72

The extracted features are classified by LightGBM and
CatBoost classifiers. Table 5 presents results achieved from
every combination of feature extractors with classifiers. The
results are reached and compared in three cropping factors.
According to the following table, the proposed method
known as EfficientNetV2B0-CatBoost achieved accuracies
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Figure 3: Parameter tuning effect on the accuracy score illustrated for each parameter according to all cropping sizes.

of 93.99%, 93.1%, and 89.7% in 160px, 120px, and 80px
cropping sizes respectively.

As illustrated in Table 5, 18 experiments were con-
ducted for this research. The EfficientNetV2B0-CatBoost
achieved better results than the 11 models in the table
through cropping sizes. For the 80px cropping size, the

proposed model outperformed almost all the other mod-
els by a considerable discrepancy, the only close ones be-
ing ResNet50-CatBoost with 89.4% and EfficientNetV2B0-
LightGBM with 89.0%. In the 120px cropping size, the
proposed model achieved the appropriate result with a 93.1%
accuracy score, with EfficientNetV2B0-LightGBM as the
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Table 5
Binary classification accuracy score in the GasHisSDB dataset

Feature
Extractor Classifier Results (based on accuracy (%))

80px 120px 160px

ResNet50 CatBoost 89.4 90.4 91.8
LightGBM 88.8 90.1 91.4

VGG16 CatBoost 87.9 89.8 90.2
LightGBM 87.4 89.1 89.4

EfficientNetV2B0 CatBoost 89.7 93.1 93.9
LightGBM 89.0 92.2 92.8

InceptionV3 CatBoost 72.0 73.5 71.8
LightGBM 71.9 73.6 72.6

ResNet101 CatBoost 88.9 91.5 92.2
LightGBM 88.0 90.5 91.4

DenseNet201 CatBoost 88.0 89.9 90.6
LightGBM 88.0 89.6 90.4

second-best model; The best individual result was obtained
for the 160px cropping size by the proposed model. For this
size, the second-best accuracy is related to the same network
by feeding the extracted features to the LightGBM Clas-
sifier, which achieved an accuracy of 92.8%. InceptionV3
network achieved the worst results of all our experiments
after feeding into both Classifiers. The average accuracies of
this network differ by approximately 16% from the others.

The proposed hybrid framework leverages a convolu-
tional neural network (EfficientNetV2B0) for automated fea-
ture extraction followed by an ensemble method (CatBoost)
for classification. This pipeline was selected to balance
accuracy and computational efficiency. EfficientNetV2B0
employs optimizations like depthwise separable convolu-
tions to reduce the number of parameters and Floating-
point operations per second (FLOPS) compared to standard
convolutional layers [42]. Meanwhile, CatBoost uses algo-
rithmic improvements like ordered boosting to accelerate
decision tree training. By combining an efficient deep CNN
with a high-speed boosting algorithm, the resulting model
aims to deliver state-of-the-art accuracy without excessive
complexity during training or inference.

As a result, considering that the best accuracies in all
three sizes were related to the EfficientNetV2B0-CatBoost,
additional evaluation metrics were calculated alongside ac-
curacy.

Based on the findings in Table 6, the proposed method in
160px size has better evaluation metrics than other cropping
sizes. This finding provides a compelling explanation for the
higher accuracy achieved with this size. As indicated by the
data in Table 6, the proposed method has high precision
besides high accuracy, indicating consistent and accurate
predictions across repeated measurements. The high 𝐹1 −
𝑆𝑐𝑜𝑟𝑒 achieved by the proposed model demonstrates the
balanced performance of recall and precision, particularly
in handling the imbalanced dataset.

To gain further insights, we generated a Grad-CAM
heatmap using the proposed model. In Grad-CAM, we
would like to preserve the spatial position information of
objects lost in a fully connected layer. The last convolutional
layer is used because its neurons identify the class type we
are not interested in. Using images generated by Grad-CAM,

Table 6
Evaluation criteria for the proposed method
Cropping size Accuracy Precision Recall Specificity F1-Score

80px 89.72 0.87 0.86 0.91 0.87
120px 93.18 0.92 0.89 0.95 0.91
160px 93.99 0.93 0.91 0.95 0.92

Average 92.29 0.90 0.88 0.93 0.90

we obtained a pre-trained model and dataset to see what the
model learned about the abnormal and normal classes for
all three crop sizes. This analysis reveals the regions of the
image that the model pays more attention to and the regions
that receive less emphasis. Additional detailed outputs from
the GradCAM algorithm can be found in Table 10.

In Table 7 and Table 8, we gathered the times taken to
complete each network which is combined with the CatBoost
and LightGBM classifier. Also, the size of the file containing
the extracted features is presented. From the provided timing
data, it’s evident that the training and parameter tuning
times for each network architecture and image size vary
significantly between LightGBM and CatBoost models. For
LightGBM, it’s noticeable that the training and extraction
times tend to increase as the image size and model complex-
ity grow. This is particularly evident with ResNet101 and
DenseNet201 models, as their larger file sizes and deeper
architectures result in longer training and feature extraction
times. Additionally, the parameter exploration times differ
considerably across the various image sizes for each net-
work, suggesting that the impact of image size on model
performance is non-trivial with LightGBM.

As for CatBoost, the training and parameter tuning times
display a similar trend to LightGBM, where larger image
sizes and more complex models lead to longer training and
feature extraction durations. Notably, the impact of image
size appears to be more pronounced for CatBoost com-
pared to LightGBM, with substantial disparities in execution
times between the different image sizes. This emphasizes
the significance of image size in influencing the compu-
tational workload and time efficiency of the training and
tuning processes for CatBoost models. Overall, the data
underscores the importance of taking image size and model
complexity into account when evaluating and optimizing the
performance of LightGBM and CatBoost models.
4.3. Discussion

Throughout our experiments, we obtain a novel method
to predict 148,120 images. The proposed method, As evident
from Figure 1, combines EfficientNetV2B0 as a feature
extractor and CatBoost as a classifier. Figure 2 illustrates the
architecture of the final model. Table 11 presents a compar-
ison of the accuracy achieved by our proposed method with
other relevant papers.

A key advantage of the proposed approach is the balance
between predictive performance and computational com-
plexity. The use of an optimized deep CNN architecture for
feature extraction avoids the high overhead of larger models
like VGG16 while still capturing meaningful representations
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Table 7
Time spent and the file size of each network combined with CatBoost (specified for each parameter).

Network Image Size File Size Extracting
Feature Iteration L2 Leaf

Reg Depth Border
Count

Min data
in one leaf Total

ResNet50 160px 533.4 MB 11193s 925s 900s 4269s 1235s 13809s 32331s
ResNet50 120px 1.38 GB 18515s 1569s 1245s 2659s 2044s 2541s 28573s
ResNet50 80px 1.4 GB 33579s 3081s 2502s 1386s 3620s 5812s 49980s

EfficientNetV2B0 160px 476.9 MB 10950s 530s 458s 7047s 1142s 6235s 26362s
EfficientNetV2B0 120px 1.54 GB 33682s 1010s 841s 1155s 794s 2475s 39957s
EfficientNetV2B0 80px 2.29 GB 45235s 1940s 1676s 2315s 6096s 8962s 66224s

ResNet101 160px 889.3 MB 23145s 777s 938s 6113s 306s 19868s 51147s
ResNet101 120px 1.38 GB 29345s 1610s 1348s 3125s 2544s 13256s 51228s
ResNet101 80px 3.01 GB 63900s 3143s 2653s 4683s 4695s 22526s 101600s

DenseNet201 160px 598.2 MB 12741s 905s 769s 11849s 1454s 1480s 29198s
DenseNet201 120px 1.75 GB 37270s 1106s 260s 5862s 599s 2653s 47750s
DenseNet201 80px 3.26 GB 69438s 2786s 2315s 2568s 6823s 5876s 89806s
inceptionV3 160px 598.2 MB 12737s 684s 355s 4623s 897s 6960s 26256s
inceptionV3 120px 2.13 GB 45368s 113s 581s 650s 1291s 2315s 50318s
inceptionV3 80px 4.73 GB 104777s 2941s 2426s 1236s 3127s 1941s 116448s

VGG16 160px 140.6 MB 2982s 274s 180s 1398s 458s 8659s 13951s
VGG16 120px 434.4 MB 8943s 436s 360s 3972s 759s 10423s 24893s
VGG16 80px 903 MB 19248s 653s 546s 4181s 1028s 6853s 32509s

Table 8
Time spent and the file size of each network combined with LightGBM (specified for each parameter).

Network Image Size File Size Extracting
Feature

Number of
Leaves

Min Child
Samples

Max
Bin

Max
Depth

Min child
Weight Total

ResNet50 160px 533.4 MB 11352s 8462s 320s 67s 2532s 1026s 23759s
ResNet50 120px 1.38 GB 29436s 352s 556s 537s 1066s 2317s 34264s
ResNet50 80px 1.4 GB 29820s 25880s 1920s 1528s 3014s 7223s 69385s

EfficientNetV2B0 160px 476.9 MB 10351s 8753s 243s 183s 387s 806s 20723s
EfficientNetV2B0 120px 1.54 GB 32802s 13292s 711s 486s 1014s 2336s 50641s
EfficientNetV2B0 80px 2.29 GB 48777s 7477s 807s 801s 1833s 3989s 63684s

ResNet101 160px 889.3 MB 18935s 4858s 409s 186s 450s 1172s 26010s
ResNet101 120px 1.38 GB 28968s 6892s 1256s 304s 1490s 2379s 41289s
ResNet101 80px 3.01 GB 63921s 13560s 1316s 1560s 2701s 6256s 89314s

DenseNet201 160px 598.2 MB 12737s 8617s 455s 307s 639s 1236s 23991s
DenseNet201 120px 1.75 GB 37275s 1486s 499s 641s 885s 2486s 43272s
DenseNet201 80px 3.26 GB 69438s 27840s 1727s 861s 1258s 5876s 107000s
inceptionV3 160px 598.2 MB 12737s 12673s 297s 241s 417s 1001s 27366s
inceptionV3 120px 2.13 GB 45369s 1514s 1282s 4502s 648s 2658s 55973s
inceptionV3 80px 4.73 GB 2994s 4546s 1158s 1208s 2539s 4727s 17172s

VGG16 160px 140.6 MB 2994s 3496s 104s 80s 174s 373s 7221s
VGG16 120px 434.4 MB 9252s 7017s 207s 161s 341s 878s 17856s
VGG16 80px 903 MB 19248s 8141s 350s 321s 606s 1464s 30130s

of the histology images. Meanwhile, CatBoost incrementally
builds an ensemble classifier through boosted decision trees
in a faster, more efficient manner compared to contemporary
gradient boosting techniques like XGBoost.

In Figure 4 an experiment was done to evaluate our
proposed method. In this test, we utilized the Receiver Op-
erating Characteristic (ROC) curve on the proposed method
on all cropping sizes. ROC curves are appropriate for evalu-
ating the model’s performance. ROC evaluates classification
performance at various threshold values such as Area Under
the ROC Curve (AUC) which shows a summary of the
ROC curve that measures a binary classifier’s capacity to

discriminate between classes. In a nutshell, the higher the
ROC curve, the better our model will perform.

The experiment visualized in Figure 5 demonstrates
that the training curve stabilizes after approximately 600
iterations and remains stable from 700 to 800 iterations. It
is worth noting that the validation curve exhibits a lesser
decrease compared to the training curve due to the larger
amount of data included in these groups. The more data
embedded into a set, the more it learns based on errors.
For better understanding, this experiment was done on all
cropping sizes in Figure 5.

Khayatian et al.: Preprint submitted to Elsevier Page 10 of 17 10            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Histopathology Image Analysis for Gastric Cancer Detection: A Hybrid Deep Learning and CatBoost Approach

Table 9
Model Performance: Robust cross-validation scores at 160px and 120px cropping sizes, with k=5 and k=9, show strong predictive
abilities and effective generalization potential.

k = 5 k= 9
Mean CV Score Max CV Score Avg CV Score Mean CV Score Max CV Score Avg CV Score

80px 89.54 89.77 89.54 89.63 89.82 89.63
120px 92.82 93.21 92.82 92.83 93.25 92.83
160px 93.61 94.15 93.56 93.56 93.81 93.61

In order to evaluate our proposed framework, we im-
plement K-Fold cross-validation to be confident about our
model performance. As obvious in Table 9, the model
demonstrates consistently strong cross-validation perfor-
mance at 80px, 120px, and 160px cropping sizes. For 160px,
with 5 and 9 splits, scores range from 93.56% to 94.15%,
and the mean score of 93.61% highlights the model’s robust
predictive abilities and proficiency in generalization. At
120px, the model achieves slightly lower scores (92.82%)
but maintains strong consistency and reliability for 5 and
9 splits, and finally in the case of an 80px cropping size,
employing 5 and 9 splits reveals scores within the range of
89.54% to 89.84%. The computed mean score of 89.77%
emphasizes the model’s resilient predictive capabilities and
aptitude for effective generalization. Overall, All cropping
sizes exhibit strong cross-validation scores, affirming the
model’s capacity for accurate predictions and effective gen-
eralization to diverse data subsets.

Also, We employed the t-distributed stochastic neigh-
bor embedding (t-SNE) technique to visualize the high-
dimensional data in a 2-dimensional space. Similar objects
are represented by neighboring points, while dissimilar ones
are depicted as distant points. Figure 6 depicts the appli-
cation of the T-SNE algorithm on a sample of 300 data
points, consisting of two main classes: normal and abnormal.
We utilized this technique both before and after feature
extraction using the EfficientNetV2 network. The results
show how significantly objects are clustered and moved
towards the ones with the same class. The primary objective
of the T-SNE algorithm is to visually represent data while
preserving the distances between objects based on various
metrics. In this study, we employed the Manhattan metric to
illustrate the distances between points. Figure 7 presents the
Confusion Matrix for each cropping size of the two classes.

In Table 5, we conclude that our proposed method with
a high achieved accuracy of 93.9% with EfficientNetV2B0
+ CatBoost framework. this conclusion could be followed
by some ambiguous questions about whether this framework
works well on other datasets or even how this model prevents
overfitting and provides hand-crafted results.

While this work focused on the GasHisSDB dataset for
model development and evaluation, testing the proposed
EfficientNetV2B0 + CatBoost framework on additional gas-
tric histopathology image datasets could further validate its
generalizability. As a highly optimized convolutional neural
network architecture, EfficientNetV2B0 may transfer well
to other datasets given its strong representation learning

capabilities from a diversity of training data. However, fac-
tors like differences in image resolution, staining techniques,
and capture equipment could impact results. Applying our
approach to multiple external datasets and comparing per-
formance would provide useful insights into the broader
applicability of this model. The proposed combination of
EfficientNetV2B0 for feature extraction and CatBoost for
classification outperformed other model architectures in our
experiments, which may be attributed to two key factors.
First, EfficientNetV2B0 leverages a cutting-edge CNN de-
sign tuned specifically for high accuracy and efficiency
through automated architecture search and scaling. Sec-
ond, CatBoost is an advanced gradient-boosting algorithm
that effectively handles categorical features and prevents
overfitting which is clear in 5 that no early-stopping is
needed. Together, the deep representation learning of Effi-
cientNetV2B0 combined with the robust boosted decision
trees of CatBoost offer complementary modeling strengths.
The high dimensionality of the 1280 features extracted by
EfficientNetV2B0 provides a rich input feature space that
CatBoost can then optimize as part of its boosted tree con-
struction process.

5. Limitations and Future Recommendations
In our endeavor to enhance the efficiency and reliability

of gastric cancer detection for clinicians, we have chosen
to address acknowledged inherent limitations and put forth
future directions that resonate with the broader discourse on
Explainable Artificial Intelligence (XAI). While our hybrid
approach significantly enhances diagnostic accuracy, the
interpretability of the intricate features extracted by deep
learning models remains a challenge. In future studies, in-
tegrating XAI methodologies could facilitate a more trans-
parent understanding of model decisions, aiding clinicians
in comprehending and trusting the diagnostic outcomes.

Another challenge in this study domain is the availability
and diversity of histopathological images which strongly can
impact model generalization because of the variations in
imaging protocols and staining techniques. Future research
should explore methods to enhance the model’s compatibil-
ity with diverse datasets, ensuring robust performance across
different clinical settings.

Finally, the most likely problem that can obstacle our
approach is constraints associated with computational de-
mands in DL models. Investigating strategies to optimize
model architectures without compromising performance is
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Figure 4: ROC curves of the proposed method for different cropping sizes

Figure 5: Learning curves of the proposed method for 80px, 120px, and 160px cropping sizes

crucial for real-world applicability. Also, collaborating with
healthcare practitioners and institutions will be essential for
the seamless integration of our model into clinical work-
flows.

6. Conclusion
This paper suggests a novel method to classify gastric

cancer into two main classes: normal and abnormal tu-
mors. The presented model was chosen based on accuracy.

However, other metrics such as precision, recall (sensitiv-
ity), specificity, and 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 are calculated for a better
view of different angles of our model. Also, the application
of cross-validation results further underscores the robust
performance of our proposed algorithm for gastric cancer
classification. The final method combines the Efficient-
NetV2B0 pre-trained model and CatBoost gradient boost-
ing. We changed EfficientNetV2B0 as a feature extractor and
set CatBoost as the appropriate classifier by choosing proper
hyperparameters. We experimented with 12 combinations of
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six pre-trained models and two gradient boosting algorithms
in all three cropping sizes: 80px, 120px, and 160px. Through
all these models, EfficientNetV2B0-CatBoost is the chosen
method with the highest accuracy: 89.7%, 93.1%, and 93.9%
for 80px, 120px, and 160px cropping sizes respectively.
According to the results and empirical evaluations around
the proposed method, our model can thoroughly diagnose
gastric cancer images provided in the GasHisSDB dataset. In
future works, new techniques such as augmentation will be
considered to cover the dataset limitations and availability,
and multiple classifications will be the main aim to get better
accuracy. Moreover, as discussed the limitations, we will
consider integrating XAI approaches to make the model
more interpretable for commercial purposes.
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Table 10
Grad-CAM outputs consist of a heat map for normal and abnormal tumors in gastric cancer. (Source of original images are
extracted from GasHisSDB dataset [25].)

Size Original image Heat-map Grad-CAM output

Normal
80px

120px

160px

Abnormal
80px

120px

160px
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Table 11
Performance comparison with state-of-the-art counterparts

Paper Method Dataset Accuracy (%)
Li et al. (2022) [22] HCRF + IC 700 gastric histopathology images 91.4

Wang et al. (2019) [17] RMDL Gastric WSI 86.5
Song et al. (2020) [19] DeepLabv3 + ResNet50 PLAGH 87.3

Weiming et al. (2022) [23] Color Histogram + Random Forest GasHisSDB 85.99
Yusuke et al. (2020) [18] CNN + ME-NBI 1492 EGC and 1078 gastritis images 85.3
Noda et al. (2022) [24] CNN 1623 gastric cancer images 86.1

Proposed Method EfficientNetV2B0 + CatBoost GasHisSDB 93.99

Figure 6: t-SNE projection on 300 images in GasHisSDB dataset before and after extracting features by the EfficientNetV2B0
model

8. Data and Code Availability
A publicly available dataset, i.e., BreakHis, was used in

this study, which is available at GasHisSDB1. In addition,
The source code of the proposed method required to repro-
duce the predictions and results is available at Github2.

1https://gitee.com/neuhwm/GasHisSDB.git
2https://github.com/danialkh/Gastric-cancerdetection
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tors.
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