MFRFENN: Multi-Functional Recurrent Fuzzy Neural Network for
Chaotic Time Series Prediction

Hamid Nasiri?, Mohammad Mehdi Ebadzadeh®*

¢ Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Chaotic time series prediction, a challenging research topic in dynamic system modeling, has
drawn great attention from researchers around the world. In recent years extensive researches
have been done on developing chaotic time series prediction methods, and various models have
been proposed. Among them, recurrent fuzzy neural networks (RFNNs) have shown significant
potential in this area. Most of the proposed RFNNs learn a single function, but when dealing with
chaotic time series, different outputs may be generated for a specific input based on the system’s
state. So, a network is required that can learn multiple functions simultaneously. Based on this
concept, a novel multi-functional recurrent fuzzy neural network (MFRFNN) is proposed in this
paper. MFRFNN consists of two fuzzy neural networks with Takagi-Sugeno-Kang fuzzy rules, one
is used to produce the output, and the other to determine the system’s state. There is a feedback
loop between these two networks, which makes MFRFNN capable of learning and memorizing
historical information of past observations. Employing the states allows the proposed network
to learn multiple functions simultaneously. Moreover, a new learning algorithm, which employs
the particle swarm optimization algorithm, is developed to train the networks’ weights. The ef-
fectiveness of MFRFNN is validated using the Lorenz and Rossler chaotic time series and four
real-world datasets, including Box-Jenkins gas furnace, wind speed prediction, Google stock price
prediction, and air quality index prediction. Based on the root mean square error, the proposed
method shows a decrease of 35.12%, 13.95%, and 49.62% from the second best methods in the
Lorenz time series, Box-Jenkins gas furnace, and wind speed prediction dataset, respectively.

Keywords: Chaotic time series, neuro-fuzzy inference system, prediction, recurrent fuzzy neural
network, time series forecasting .

1. Introduction

As a mathematical theory, chaos theory has been one of the hot research topics for decades.
The idea behind it is that unpredictable and random behavior can occur in a system that follows
deterministic laws, implying that a specific initial condition constantly evolves in the same way.

*Corresponding author
Email addresses: h.nasiri@aut.ac.ir (Hamid Nasiri), ebadzadeh®@aut.ac.ir (Mohammad Mehdi
Ebadzadeh)

Preprint submitted to Neurocomputing March 7, 2023

Poincare was the first to discover a chaotic system, thus establishing the groundwork for modern
chaos theory[[1]. Since then, many researchers have worked on this theory and developed it rapidly.
Following the development of chaos theory, this theory has been used by researchers in various
fields. The chaotic time series, one of the most popular chaos applications, connects the real world
and chaos theory like a bridge [} 2].

Chaotic time series are series of consecutive observations gathered from a chaotic system. For
predicting the system’s behavior, past data points are used to build a model that represents the
underlying dynamic of that system [3, 4] This is a very effective modeling method when there
is not enough knowledge about the underlying data generation process or when the relationship
between the observed variables and the prediction variable is not obvious [5]. In recent years
extensive researches have been done on the development of chaotic time series prediction methods,
and various models have been proposed, including Artificial Neural Networks (ANN) [4), [6-8],
Fuzzy Neural Networks (FNN) [1]], Autoregressive models [9]], Swarm Intelligence based models
[10]. Among these models, FNNs and ANNs are the best models as they have great ability in
handling nonlinearity [11-H13]]. It has been proved theoretically that ANNs and FNNs are universal
approximators capable of estimating an arbitrary nonlinear function to any desired accuracy [14-
16].

Although feed forward neural networks can map the static input-output relationship, they are
unsuitable for modeling the chaotic time series [17]. Despite the poor performance of the feed
forward structure in predicting time series, Recurrent Neural Network (RNN) has shown the sig-
nificant potential of learning temporal dependencies within time series data [[18, [19]]. Due to the
existence of a feedback loop in RNN’s structure, it can learn and memorize information of the past
observations by forming the structure of information circulation [20]. RNNs are computationally
powerful and significantly compact compared to feed-forward networks for the same approxima-
tion accuracy. Moreover, RNNs have proven to be universal approximators [21]. Although RNNs
have good prediction ability, it is difficult to train them due to the vanishing or exploding gradient
problem. These problems lead to slow convergence and higher computational requirements [22].

Other methods showing promising performance for time series prediction are FNNs. FNNs are
hybrid methods that combine an ANN’s learning capabilities with a fuzzy system’s interpretability
and semantic transparency. FNNs have a considerable advantage in terms of local representation
and human reasoning and have proven to be quite effective in dealing with nonstochastic uncer-
tainties [[14]]. Since FNNs are capable of capturing the underlying relationship from the data, they
have achieved great success in time series prediction [23]]. To combine RNNs potential of learn-
ing temporal dependencies with FNNs capability to deal with fuzzy information, Recurrent Fuzzy
Neural Network (RFNN) has been proposed in the literature [24-30].

Although the proposed RFNNs can learn temporal dependencies and memorize historical in-
formation, most of them learn a single function, so they generate a specific output based on the
current and previous inputs in each time step. But when dealing with chaotic time series (i.e.,
strong nonlinear problems), different outputs may be generated for a specific input based on the
system’s state. To better explain the problem through visualization, we illustrated the return map
of the Mackey-Glass chaotic time series in Fig. m As it can be seen, in x*, there are two pos-
sible outputs (i.e., @ and B), and based on the system’s state, the output can be different. In this
problem, the algorithm needs to learn two different functions simultaneously (i.e., | and F,) us-

2

. z(n)
Figure 1: Return map of Mackey-Glass chaotic time series.

ing two states to let it select one based on the system’s state. Therefore, if an algorithm learns a
single function, it can not determine the output value in x* and, as a result, can not achieve high
accuracy in time series prediction. So, a network is required to determine the system’s state and
learn a single function for each state. In other words, the system should be capable of learning
multiple functions simultaneously. Another issue to be addressed is the fact that chaotic time
series are highly sensitive to initial conditions, leading to long-term unpredictability characteris-
tics [, 15, 31]. Therefore, a network with long-term prediction ability requires learning the states
of the system to capture the dynamic behavior of the chaotic time series. It also needs a structure
with a feedback loop to memorize historical information of past observations.

In light of the requirements outlined above, a novel multi-functional recurrent fuzzy neural net-
work (MFRFNN) for time series prediction has been proposed in this paper. MFRENN consists of
two FNNSs, one to predict the future value of time series and the other to determine the state of the
system. The proposed network has a feedback loop between two networks to learn and memorize
historical information of past observations. Furthermore, it employs the states to learn multiple
functions simultaneously that result in capturing the dynamic characteristics of the chaotic time
series and predicting long-term values of the time series. To the best of the authors’ knowledge,
MFRENN is the first RENN that determines the system’s state, learns a single function for each
state, and models multiple functions simultaneously. The major contributions of this paper are
summarized as follows:

1. A novel multi-functional recurrent fuzzy neural network for time series prediction is pro-
posed, which combines the advantages of an RNN and an FNN. MFRFNN consists of two
FNNss that connect with a feedback loop. This helps MFRFNN to memorize past observa-
tions and capture the dynamic characteristics of chaotic time series. Moreover, it determines
the system’s state and is capable of learning multiple functions simultaneously.

2. Developing a new learning algorithm to learn weights of MFRFENN. This algorithm employs
the least square method and particle swarm optimization algorithm to learn the weights of
two FNNs.

3. The effectiveness of MFRFNN is evaluated with the Lorenz and Rossler chaotic time series
and four real-world time series. The experimental results show that MFRFNN effectively
forecasts time series, and the prediction accuracy is considerably increased. For the Lorenz

3

time series, Box-Jenkins gas furnace dataset, and wind speed prediction dataset, based on
the root mean square error, the proposed method showed a decrease of 35.12%, 13.95%, and
49.62% from the second best methods, respectively.

The rest of the paper is organized as follows: Section [2reviews the related works. Section
briefly introduces the particle swarm optimization (PSO) algorithm. The proposed method is then
introduced in Section] with Section [5] evaluating the performance of MFRFNN and giving the
experimental results. Section[6|presents a discussion of the results, and finally Section[7|concludes
the paper with a short summary.

2. Related Works

In recent years, time series prediction has attracted broad attention from researchers, it became
more and more popular as time goes by, and various methods have been proposed for it. ANN
is one of these methods. Many researchers have developed novel radial basis function neural net-
works (RBFNN) for time series prediction tasks. Li et al. [32] proposed ECA-Adam-RBFNN,
which uses an enhanced clustering algorithm and the Adam algorithm to train an RBFNN. They
used K-means with ant colony optimization to determine the center of RBFS. Also, the Adam al-
gorithm was used to adjust the centers and weights of the network. Zhu and Meng [33] developed
RBFNN-GA for gross domestic product prediction in 2021. RBFNN-GA employs the genetic
algorithm to tune the parameters of the RBFNN. Han et al. [34] proposed a novel self-organizing
RBFNN, which uses an accelerated second-order learning algorithm to optimize the structure and
parameters of RBFNN simultaneously. Another method is RNN, showing great ability in dealing
with temporal dependencies [[18]]. Different variants of RNN have been proposed in the literature,
such as long short-term memory (LSTM), gated recurrent unit (GRU), and echo state network
(ESN).

ESN, proposed by Jaeger and Has [35], has a good performance for chaotic time series predic-
tion. It is composed of an input layer, a reservoir of sparsely connected and randomly-generated
neurons, and an output layer. It has the RNN’s potential of learning temporal dependencies but
does not require training of the internal weights [5]. However, ESN has a major problem, which
is instability, and suffers from the ill-posed problem in the learning process, when the number of
observations is less than the number of output neurons weights [5]. To tackle this problem, several
extensions of ESN have been proposed [, 11, 36-40]].

In 2018 Chen and Lin [41] proposed the broad learning system (BLS), which is a randomized
neural network with a flat structure [3),[20]]. The BLS has received considerable attention from the
researchers due to its outstanding performance in different machine learning problems, especially
time series prediction [20]. Xu et al. [3] developed a novel recurrent BLS (RBLS). To make
the network capable of learning the dynamic characteristics of the time series, they add feedback
loops in the enhancement nodes and used the conjugate gradient method to update the parameters
of RBLS.

FNNss are a combination of ANNs and fuzzy logic systems (FLSs), which benefit from both the
learning capability of ANNs and the semantic transparency and interpretability of FLSs [30, 42,
43]]. Different types of FNNs have been proposed in the literature [26,27,30,44-48]. Angelov and
Filev [44] developed €TS, which is an evolving Takagi-Sugeno (TS) model that employs recursive

4

clustering with subtraction to update the network structure. Rong et al. [45] proposed the sequen-
tial adaptive fuzzy inference system (SAFIS), which implements a zero-order TS model and uses
a rule influence metric to add or remove fuzzy rules. SAFIS updates its rules using an extended
Kalman filter [30} 45]]. Subramanian and Suresh [46]] introduced a meta-cognitive neuro-fuzzy in-
ference system (McFIS) in 2012. They proposed a meta-cognitive sequential learning method for
MCcFIS, which chooses the best training strategy for each sample based on its instantaneous error
and spherical potential of the rule antecedents. PANFIS [47/]] is proposed by Pratama et al. in 2013.
It starts the learning process with an empty fuzzy rule base and grows it by statistical contributions
of the fuzzy rules. PANFIS also employs rule blending for pruning redundant rules [26, 30, 47].
Pratama et al. [48] extended PANFIS idea and proposed GENEFIS. In GENEFIS each feature’s
contribution is measured both in the antecedent and in the consequent of the rules. GENEFIS
has the capability of online feature selection [48]. Ebadzadeh and Salimi-Badr [49] proposed
CFNN, an FNN with correlated fuzzy rules, which uses the Levenberg-Marquardt (LM) method
to learn fuzzy rules parameters. Their proposed method can approximate nonlinear functions with
highly correlated input variables with fewer fuzzy rules. ICENN [42], an FNN with interpretable
correlated-contours fuzzy rules, was proposed in another paper by Ebadzadeh and Salimi-Badr.
They introduced a novel shapeable membership function (MF) with an adjustable shape to form
contours with different shapes. They also used the LM method to fine-tune fuzzy rules. However,
since these models do not have recurrent connections, they could not learn temporal dependencies
and memorize past information. As a result, the RFNNs were proposed.

Juang et al. [24] proposed RSEFNN-LF, a recurrent fuzzy neural network with local feedback.
The RSEFNN-LF obtains its recurrent structure by locally feeding a fuzzy rule’s firing strength
back to itself. They used the Kalman filter and gradient descent algorithm for parameter learning.
MRIT2NEFS [25]], a mutually recurrent interval type-2 neuro-fuzzy system, was proposed by Lin et
al. MRIT2NEFS uses interval type-2 fuzzy sets for the antecedent part of fuzzy rules. Its recurrent
structure comes from a local internal feedback, which is established by feeding the firing strength
of each rule to all rules, including itself. This RFNN employs type-2 fuzzy clustering for structure
learning and the rule-ordered Kalman filter algorithm for parameter learning. Samanta et al. [26]
developed a novel spatio-temporal fuzzy inference system (SPATFIS), which uses memory type
neurons to incorporate spatial and temporal information of the time series. SPATFIS has a dual
recurrent structure (input and defuzzification layers) and employs a novel learning method to add
and remove fuzzy rules. Its stability is proved in [26]. However, a major drawback of SPATFIS is
that sometimes its memory neurons cannot track rapidly changing system dynamics [30]. Samanta
et al. [27]] proposed NFIS-DN in 2019. NFIS-DN uses dynamic neurons, which consider only the
impact of finite past observations, allowing the system to have finite memory. An evolving RFNN
(i.e., eRIT2IFNN) was introduced by Luo et al. [28]. The eRIT2IFNN utilizes interval type-
2 fuzzy sets to improve uncertainty modeling and employs Takagi-Sugeno-Kang (TSK) fuzzy
rules for inference. Moreover, eRTI2IFNN uses a density-based clustering method for structure
learning. Its recurrent structure comes from a local internal feedback loop, which is created by
feeding the firing strength of each rule to itself. Ding et al. [29] developed SORFNN-MTSA, a
self-organizing RFNN. SORFNN-MTSA employs a self-organization mechanism to optimize its
structure. It utilizes a recurrent mechanism, based on wavelet transform and fuzzy Markov chain
to increase the convergence speed. In [30]], a Bayesian neuro-fuzzy inference system (BaNFIS) is

5

proposed, which estimates temporal dependencies on past observations using an online Bayesian
probabilistic method. BaNFIS only keeps past information as long as it is required and uses them
globally or locally. Based on how the model uses past information, the authors in [30] proposed
two models: Global BaNFIS and Local BaNFIS. For more details on these models, please refer
to [30]. Table [I] summarizes the advantages and disadvantages of different time series prediction
methods. As mentioned, when dealing with strong nonlinear problems, RFNN should be capable
of learning multiple functions simultaneously, but most RFNNs learn a single function, so they can
not generate different outputs for a specific input. This paper attempts to fill this gap by proposing
a novel multi-functional recurrent fuzzy neural network, which can determine the system’s state
and learn multiple functions simultaneously by employing it.

3. Background

To clarify the proposed network and make the paper more compact, this section presents a
brief introduction of particle swarm optimization (PSO). The PSO was proposed by Kennedy and
Eberhart [50] in 1995, is a population-based stochastic optimization method inspired by the social
behaviors observed in flocking birds. In PSO, a candidate solution of the optimization problem is
referred to as a particle, and a group of particles makes a swarm. Each particle has its position and
velocity. The ith particle’s velocity and position at kth iteration are updated according to equations

(1) and @).
Vi = wvk 4 iy (Pf{ - Xf{) T 0ol (pgbesf B Xf) "

X = xf + vl (2)

i i

where x¥ and v¥ denote the position and velocity of the ith particle at the kth iteration, respectively.
p! and p’;bm are the personal best position of the ith particle and the global best position of the
swarm, respectively. w is the inertia weight. ¢, and ¢, are cognitive and social acceleration coef-
ficients determining the relative importance of pf.‘ and p* r; and r; are uniformly distributed

gbest*
random vectors within the interval [0, 1] [51]].

4. Proposed Method

In this section, the proposed multi-functional recurrent fuzzy neural network is presented.
MFRFENN consists of two FNNs with TSK fuzzy rules. One produces the system’s output (called
output network), and the other determines the state of the system (called state network). These two
networks connect with a feedback loop, which helps MFRFNN in memorizing historical informa-
tion of past observations. Furthermore, the state network allows it to learn multiple functions
simultaneously that result in capturing the dynamic characteristics of chaotic time series. An
overview of the proposed method is shown in Fig. [2|

Let N denote the number of the states, K; and K, denote the number of fuzzy rules of the
output network and state network, respectively. Then, the output network performs N function
approximations, each with K; fuzzy rules, i.e., it learns a function for each state. The system’s
output consists of N segments. In each segment, a state approximates a function, and the final
output is the sum of these functions. The state network also performs N function approximations,

6

Table 1: Summary of the advantages and disadvantages of different time series prediction methods

Authors Year Model Type Advantages Disadvantages
Li et al. [32] 2021 ECA-Adam- -Ability to learn the nonlinear -Local minima problem
RBFNN relationship between input and -Determining the optimal struc-
output ture and hyperparameters is dif-
Zhu and Meng [33] 2021 RBFNN-GA RBFNN ~LOW training time | fieult
-Having a low standard devia- -Unable to model the temporal
tion due to its simplicity dependency of the time series
Han et al. [34] 2022 ASOL- -Performs more robustly than data
SORBFNN multilayer perceptron -Low accuracy in long-term
prediction
Han et al. [37] 2014 L;ESN -Ability to learn temporal de- -Stability problems
pendencies within time series -Vanishing and exploding gra-
Scardapane et al. 2016 L;ESN -Having a significantly compact dient problems
136] ESN size compared to feed-forward -Collinearity problems when
networks for the same predic- using high-dimensional reser-
Xu et al. [1T] 2016 AEESN tion accuracy voirs
-Low training time compared to
Xu et al. [3] 2019 HESN other RNNs
Angelov 2004 TS -Interpretability and semantic -Unable to model the temporal
and Filev [44] transparency dependency of the time series
Rong et al. [45] 2006 SAFIS -Ability to handle nonstochastic data
Subramanian 2012 McFIS uncer.talntles -LOVY accuracy in long-term
and Suresh [46] ENN -Having a good local represen- prediction

Pratama et al. [47]]
Pratama et al. [48]]
Ebadzadeh and
Salimi-Badr [49]
Ebadzadeh and
Salimi-Badr [42]

2013 PANFIS
2013 GENEFIS

2015 CFNN

2017 ICENN

tation power
-Human-like reasoning capabil-

ity

Juang et al. [24]]
Lin et al. [25]
Samanta et al. [26]]
Samanta et al. [27]
Luo et al. [28]]

Ding et al. [29]
Subhrajit et al. [30]

2010 RSEFNN-LF
2013 MRIT2NFS
2019 SPATFIS
2019 NFIS-DN
2019 eRIT2IFNN
2021 SORFNN-
MTSA
2021 BaNFIS

RFNN

-Ability to learn temporal de-
pendencies within time series
-Interpretability and semantic
transparency

-Ability to handle nonstochastic
uncertainties

-Having a good local represen-
tation power

-Stability problems
-Learning a single function for
time series prediction task

each with K, fuzzy rules, to determine the next state of the system. Fig. [3| demonstrates the
structure of MFRFNN. As shown in Fig. 3] both networks consist of five layers. The operation
function of the neurons in each layer is described as follows:

1. Input layer: This layer accepts input variables, and its neurons correspond to the mem-
bership functions (MFs). It is used to compute the membership values of input variables. Let
X = [x1, X2, ,x4]7 denote the input and y denote the predicted output. A;; and B; ; are the MFs
for x; in the ith rule of output and state network, respectively, and the membership value of jth

7

x

y
Output Network ——
Z—l

A
.

State Network

St+1)

Figure 2: Overview of MFRFNN.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

—

Crisp Membership Functions

51

s,

Sy

S N

2990

State Network
I Fuzzy Membership Functions

5

1
S,
1
* == | |
Membership:|
Functions -|

s,

NN

w00

Figure 3: MFRFNN architecture. The output network produces the system’s output, and the state network produces
state signals. Membership functions (MFs) in the output layer can be crisp or fuzzy MFs. If crisp MFs are used, the
network’s states become discrete, and if fuzzy MFs are used, its states become continuous.

input variable x; on A; ; is denoted by uy, ; (x j), so the output of each neuron A; in this layer is the

membership value of x; on A, j, i.e., Ha,, (xj). Obviously, there are K; X d and K, X d neurons for
the output and state network in this layer, respectively.

2. Fuzzy rules layer: Neurons at this layer represent the fuzzy rules, and their output repre-
sents the firing strength of a rule. Let r; and ¢; denote the output of the ith neuron of this layer
for the output and state network, respectively. They can be computed by applying the T-norm
operator on the previous layer’s outputs. Using the algebraic product as the T-norm operator, the
firing strength of each rule can be computed by (3) and (@).

d
rx) = [Jaa,, (%) (3)
j=1

d
¢ = [| s, (x)) @)

j=1
3. Normalized fuzzy rules layer: Output of the neurons in this layer represents the normalized
firing strength of each rule (#; and g; for the output and state network, respectively) and can be

computed by (5) and (6).

_ ri(x)
i(X) = ——— (5)
TR
_ qi(X)
Gi(X) = —j—— (6)
> 21 4%

4. Extended fuzzy rules layer: For each network, N linear combinations of normalized
firing strength of rules are computed in this layer, and the output of N separate functions is de-
termined. There are N neurons in this layer for each network. The output of the neurons in this
layer represents the output of approximated functions (F; and G; for the output and state network,
respectively) that can be computed as follows:

Fj=) Fw; (7)

G ji= qi\/’,’ j (8)
i=1
where w;; and v;; represent the link weight corresponding to the ith rule of the output and state
network in the jth state of the system, respectively, the link weight matrix of the output network
(W) can be expressed by (9).

W11 Wiz WIN
Wap Wy ot Wiy

W= . A .)
Wki1 Wkp2 - WKN

5. Output layer: Output layer of the output network computes the system’s output (y). In
this layer, the output of functions from the previous layer is multiplied by state signals (from state
network); as a result, the function corresponding to the current state is activated, and the other
functions are deactivated (multiplied by zero) and have no effect on the output. The final output
of the system is the sum of these functions. Let F(t) and S(#) denote vectors whose entries are the
output of approximated functions and state signals of the system at the time step ¢, respectively, as

presented in (10).
F(1) = [F1, Fa, -+, Fy]"

(10)
S(t) = [s1, 82, , sl
The output of the system at the time step 7, (9) is computed as follows:
5(0) = F()S(1) (1)

9

Output layer of the state network produces state signals as output. In this layer, first, the output
of neurons from layer 4 is multiplied by state signals. Then, the results are summed up and given as
input to the membership functions. Then, the output of membership functions determines the next
state of the system and considered as state signals. Finally, these signals go to a delay unit, and
the output of the delay unit goes to layer 5 of both networks as a feedback loop. The intermediate
output of this layer at the time step ¢ is computed as follows:

o(t) = G()TS(®) (12)

where G(f) denotes a vector whose entries are the output of the previous layer’s neurons, as pre-
sented in (T3)) and can be computed by (14).

G(1) = [G1,Ga, -+ ,GN]" (13)

G =V'Q) (14)

where V and Q(¢) denote the link weight matrix of the state network and vector of normalized
firing strength of the fuzzy rules at the time step ¢, respectively, expressed in (15)).

q Vit Vi2 ot VIN
175) Vo Va2 ottt Vow

Q@ = . Y=l A : (15)
qk, VK1 Vk2 VKGN

Assuming that all entries of V and W are in the range [0, 1], then o(¢) is normalized in the range
[1, N] and gives as input to the MFs. The input to the MFs at the time step 7, o(f) is computed as
follows:

o(t)=lo(t) x (N-1)]+1 (16)

Let E; denote the ith MF at the output layer, the system’s state at the time step # + 1, S(r + 1) is
determined by (I7).
uE, (0())

e, (0(1))

S(t+1) = (17)

ey (0(2))

where g (0(2)) 1s the membership value of o(¢) on E;. As shown in Fig. 3] MFs can be crisp or
fuzzy MFs. If crisp MFs are used, the network’s states become discrete states, and if fuzzy MFs
are used, its states become continuous states. In the case of fuzzy MFs (i.e., continuous states),
the final output is a weighted sum of N approximated functions.

As above description, the total number of trainable parameters for MFRFNN is (K + K;) X N.
The link weight matrix of the output network (W), and state network (V) have K; X N and K; X N
trainable parameters, respectively. The training procedure of the output network weight matrix is
described as follows:

10

: . p .
Given a training dataset D = {x[’], y[’]}t_l, where p denotes the number of training samples. In

addition to (TT), the output of the system can also be computed by (T8):
N T T
$=tr ((R(t)S ®) W) (18)

where tr(-) denotes the trace of a matrix and R(¢) is a column vector whose entries are the normal-
ized firing strength of fuzzy rules as presented in (19):

R() = [F1, 720+, 7x,] (19)

By plugging p training data into (18], the matrix equation (20) is obtained.

Af =y (20)
_ _[1 [—[1
}"E]Sl FE]SZ rg]sl }"E{]SN
A2 H2 L Ha G
A = 1 01 1 92 2 01 K, °N
I_"gp]Sl I_’EP]SZ f'gp]S] fg(pl]SN (21)
T
0:[W11 Wi = Wpp o WK]N]
T
_ 1 2
y_[yu Y2 ylpl]

where ,—,l[ﬂ denotes the normalized firing strength of ith rule for the jth training sample and y!’

denotes the actual output of the ith training sample. A closed-form solution for (20), which mini-
mizes ||Af — y||* can be derived by the Moore-Penrose pseudoinverse:

6" = (ATA) ATy 22)

Obviously, € is a column vector of length (K; X N), whose entries are the weight matrix (W)
entries.

Since the relationship between the link weight matrix of the state network (V) and the output
is not linear, the trainable parameters of V cannot be obtained by the linear least-squares method.
Therefore, PSO is used for learning these parameters. In the proposed training algorithm, in addi-
tion to position (x) and velocity (v), each particle has its own output network’s weight matrix (w).
Obviously, in this optimization problem, x represents the weight matrix of the state network that
has to be optimized. The training algorithm of the output network weight matrix is summarized in
Algorithm[I] The cost value calculation algorithm in the training phase is also implemented in this
algorithm. MFRFNN training algorithm details are shown in Algorithm 2] Finally, the prediction
algorithm in the test phase is summarized in Algorithm

5. Experimental Results

This section evaluates the performance of MFRFNN on two chaotic systems (i.e., Lorenz and
Rossler) and four real-world datasets, including Box-Jenkins Gas Furnace, Wind Speed Predic-
tion, Google Stock Price Prediction, and Air Quality Index Prediction. These benchmarks are

11

Algorithm 1: Training of output network weight matrix

Input: K, K, N, V, Training dataset D = {x[’],y[’]}il
Output: 6*, Cost Value C

S0
S; <1 // Starting from state 1
A« []// An empty matrix
fort—1 to p do
fori—1 to K; do

‘ Compute r; (x”]) using Eq.(3)
end
fori—1 to K, do

‘ Compute 7 (X[’]) using Eq.(3)
end
Add new row [f&’]sl fE’]
matrix A in Eq.)
fori—1 to K, do

‘ Compute ¢; (x“J) using Eq.(@)
end
fori—1 to K, do

‘ Compute g; (x[’]) using Eq.(6)
end
Compute G(¢) using Eq. (T4)
Compute o(t) using Eq. (12)
Compute o(r) using Eq.
Compute S using Eq. (I7) // Determine the next state

AR fgf]sN fg]sl -~~7%]1SN] to

end
Compute 6" using Eq. (22)
§ — A6

1 o2
C e /5 20,01 -¥)

standard benchmarks and have been widely used in the time series prediction community. Since
the mentioned datasets did not contain any outliers, Min-max normalization was used to scale all
data into the range [0, 1] in all experiments. To handle outliers, Z-score normalization (Standard-
ization) can be used. The experiments were run on an Intel Core i15-8250U, 1.60 GHz CPU with
8 GB RAM, running Windows 10 operating system. To assess the performance of MFRFNN and
compare its performance with other methods, five evaluation metrics were used: Mean Square
Error (MSE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE),
Mean Absolute Error (MAE), and Symmetric Mean Absolute Percentage Error (SMAPE).

The parameters of MFRFNN, including the number of fuzzy rules for the output network
and state network, number of states of the state network, and maximum number of fitness eval-
uations for the PSO algorithm, were chosen by trial and error using the validation set in each
benchmark. For the number of fuzzy rules of the output and state network, different values
from 2 to 5 were tested. For the number of states, different values from 2 to 15 were evalu-

12

Algorithm 2: Training of MFRFNN

Input: K, K,, N, Training dataset D = {x[’],y[’]}
Output: The global best particle (gbest)

P
t=1

for each particle i do

Initialize x; € RE2XMX1 apd v; e REXNX1 ¢ random vectors

Initialize w; € REXNXI 4 3 random vector

Pi < X;

Update w; and calculate the cost value f(p;) using Algorithm I]
end
gbest <« arg minf(p;)

1

while stopping criterion is not met do

for each particle i do

Update v; using Eq. (I)

Update x; using Eq. (2)

Update w; and calculate f(x;) using Algorithm(w,- — 0
if f(x;) < f(p;) then

Pi < X;
if f(Pz) < f(pgbest) then
| gbest « i
end
end

end
end

ated, and the maximum number of fitness evaluations for the PSO algorithm was chosen from the
set {250, 500, 1000, 2000, 4000}. Moreover, the validation set was used to avoid overfitting and
improve the model’s generalization. In each experiment, first, we chose the parameters’ values
based on the validation error and then set these parameters and computed the test error. Table
summarizes the selected parameters for each benchmark. To ensure a fair comparison with other
methods, we set the number of input steps equal to the number of input steps of the comparing
method. The direct forecasting strategy was used for all methods in all experiments. Also, sym-
metrical and uniformly distributed triangular MFs were used for the input layer of MFRFNN’s
output network and state network. It is worth mentioning that we evaluated different types of
MFs, including triangular, Gaussian, combination of two Gaussians, and Generalized bell-shaped,
and the best results were obtained by triangular MFs. Moreover, it has been proved theoretically
in [52] that why in practice, this type of MFs work so well. We considered two cases for the state
network’s output layer’s MFs: crisp MFs, i.e., MFRFNN with discrete states, and fuzzy MFs, i.e.,
MFRFNN with continuous states.

5.1. Lorenz System
The Lorenz system is a non-linear, three-dimensional system that can be described as follows:

13

Algorithm 3: Predicting the output in the test phase

Input: K, K>, N,V, 6" Test dataset D = {X[t]’y[r]};

Output: Predicted output (¥)

S<0

S; <1 // Starting from state 1
A« []// An empty matrix
fort—1 to p do

fori—1 to K; do

‘ Compute r; (x'”) using Eq.(3)
end
fori—1 to K| do

‘ Compute F; (x[’]) using Eq.(3)
end

Add new row [?E’]sl ?E’]

matrix A in Eq. ZI)
fori—1 to K, do

‘ Compute ¢; (x[’]) using Eq.(@)
end
fori—1 to K, do

‘ Compute §; (xm) using Eq.(6)
end
Compute G(¢) using Eq. (T4)
Compute o(t) using Eq. (I2)
Compute o(t) using Eq. (16)

11 Ayl
S20 SN Fy S

end
y — A6*

=l

s VK.SN] to

Compute S using Eq. // Determine the next state

Table 2: The main parameters of MFRFNN in each benchmark

Maximum Number of FES Number of

Benchmark Ki K N (PSO Algorithm) input steps

Lorenz System 27 27 3 500 1

Rossler System 27 27 3 250 1

Box-Jenking Gas Furnace 9 4 2 4000 1

Wind Speed Prediction 4 4 2 4000 1

Stock Price Prediction 3 3 2 4000 1

Air Quality Index Prediction 16 16 2 250 4
dx/dt = o(y — x)
dy/dt =x(p—2)—y (23)
dz/dt = xy — Bz

when o = 10, 8 = 8/3, and p = 28, the system has chaotic solutions. The experimental setup,
same as [3l], was used in this paper, and the fourth-order Runge-Kutta method was used to generate

14

samples. Table 3| summarizes the details of the experimental setup.

Table 3: Details of the experimental setup for the Lorenz system

Parameter Value
Number of samples 20000
Initial state [12,2,9]
Step size 0.01
Number of training samples 11250
Number of validation samples 3750
Number of test samples 5000

To evaluate the performance of MFRFNN on chaotic systems, this experiment was conducted
using two state-of-the-art methods, including deep autoencoder (DAE) [53]] and RBLS [3]], as well
as three other machine learning methods: ELM [54], ESN [35], and &e-SVR [55]. For this ex-
periment, the parameters settings of other methods and experimental setup were the same as [3]].
Table [presents the one-step-ahead prediction results of the Lorenz time series, including twenty
independent runs’ averages and standard deviations. Furthermore, to evaluate whether the superi-
ority of a method was statistically significant, a two-tailed Welch’s 7-test with a significance level
a = 0.05 was applied for RMSE between MFRFNN with continuous states and other methods.
Welch’s t-test is a nonparametric univariate statistical test, useful when the two samples have un-
equal variances [56]. The last column of Table[d]shows the p-value of the two-tailed Welch’s 7-test.
In all comparisons except the comparison of MFRFNN with continuous states and RBLS on the
z(t) series, the null hypothesis is clearly rejected based on the tests with a 95% confidence level
(p-value < 0.05), giving statistically significant results. Fig. [4] shows one-step-ahead prediction
curves, error curves, and histograms of errors for the Lorenz series generated by MFRFNN with
continuous states.

5.2. Rossler System

The Rossler system is a classical system, consisted of three non-linear ordinary differential
equations and can be defined by:

dx/dt =-y—z
dy/dt = x + ay (24)
dz/dt =b+ z2(x —¢)

when a = 0.15, b = 0.2, and ¢ = 10, the system shows chaotic behavior. To compare the
performance of MFRFNN with other methods under the same condition, the experimental setup,
same as [S], was used for the Rossler system. In this setup, the fourth-order Runge-Kutta method
was employed for sample generation. Some of the samples were discarded to eliminate the tran-
sient influence of the initial condition. Table [5] presents the details of the experimental setup for
the Rossler system.

To evaluate the performance of MFRFNN on long-term prediction task, we compared its per-
formance with six extensions of ESN: ESN based on L;-norm (L; ESN) [37]], ESN based on L,-
norm regularization (L,ESN) [38]], ESN based on elastic net regularization (EESN) [39]], ESN

15

Table 4: One-step-ahead prediction error comparison on the Lorenz System

Series Method RMSE SMAPE NRMSE p-value
avg 8.05E-04 300E-05 1.02E-04]
DAE std (2.91B-05) (3.84B-06) (3.68B-06) ~--F-31
ave 247E-04 123B-05 3.13E-05 _
ESN std (645B-06) (3.92E-07) (8.18E-07) @ O4E49
avg 7T21E-04 342B-05 9.14E-05]
Lorens ELM std (8.94E-07) (6.27B-08) (1.13E-07) 2> /°E41
] avg 3.58E-03 220E-04 4.54E-04]
Syxs(tgm &-SVR std (0.00E+00) (0.00E+00) (0.00E+00) -49E->3
avg 205E-04 9.30E-06 2.60E-05 _
RBLS std (1.83B-06) (9.10B-08) (2.32B-07) - /°E32
MFRENN avg 652E-05 258E-06 8A2E-06 o oo .
(Discrete States) std (1.59B-05) (4.46E-07) (2.06E-06) °
MFRENN avg 2.44E-05 7.27E-07 3.15E-06]
(Continuous States) std (6.62E-06) (2.00B-07) (8.56E-07)
avg 242E-03 9.02E-05 2.69E-04]
DAE std (487B-05) (5.93E-06) (5.43E-06) ~07E2
avg S5.65E-04 2.61E-05 6.29E-05]
ESN std (175B-05) (9.85E-07) (1.95E-06) ~~oE-18
avg 226E-03 8.10E-05 2.51E-04]
Lorens ELM std (177E-06) (1.28E-07) (1.97E-07) 134
] avg S5.86E-03 329E-04 6.52E-04]
Syys(t;m &-SVR std (0.00E+00) (0.00E+00) (0.00E+00) 0442
avg 4.15E-04 1.71B-05 4.61E-05 _
RBLS std (6.16E-06) (2.23E-07) (6.86E-07) -20E-06
MFRENN avg 1S3E-03 662E-05 L7404 o
(Discrete States) std (2.15E-04) (9.85E-06) (2.44E-05)
MFRENN avg 3.58E-04 1.40E-05 4.05E-05]
(Continuous States) std (3.95E-05) (2.68E-06) (4.49E-06)
avg 198E-03 2.34E-05 2.29E-04]
DAE std (279E-05) (1.16B-06) (3.24E-06) > 13E42
avg 6.16E-04 8.56E-06 7.16E-05]
ESN std (1.90B-05) (2.75B-07) (2.21B-06) +43E-14
ave 178E-03 2.04E-05 2.07E-04
Lorens ELM std (739E-07) (3.19E-08) (8.58E-08) >U/E29
] avg 479E-03 823E-05 5.57E-04]
Syzittﬁ)’m &-SVR std (0.00E+00) (0.00E+00) (0.00E+00) 02E-38
ave 452E-04 538B-06 5.25E-05 _
RBLS std (7.69B-06) (7.97B-08) (8.93B-07) O 01
MFRENN avg 120E-03 L62E-05 LSIE04 o0
(Discrete States) std (1.53E-04) (1.57E-06) (1.80E-05)
MFRENN ave 4.36E-04 4.79E-06 5.09E-05]
(Continuous States) std (4.90E-05) (5.65E-07) (5.71E-06)

16

Figure 4: One-step-ahead prediction curve, error curve, and histogram of errors for the Lorenz time series generated

by MFRFNN.

Lorenz 20000 - x(t)

Absolute Error

TLorenz 20000 - y(t)

Lorenz 20000 - 2(t)

Absolute Error

15
wib 0 ML E L TR
5 V
0
5 | |
o RIIIEEERRIIE] | 8
15 4
" ‘ ‘ ‘ | ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time Step
(a) Prediction curve for Lorenz System x(f)
20
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time Step
(c) Absolute error curve for Lorenz System x(f)
30 T T T T T T T T
Feoted
20
IR I w1 il
0
10 IR ARERRIIRIE R
-20 -
0 ‘ | ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time Step
(d) Prediction curve for Lorenz System y(r)
4 x10~%

L
4500

L L
2500 4000

Time Step

(f) Absolute error curve for Lorenz System y(f)

L L L
1000 1500 2000

L
0 500

3000 3500 500

0

50 T T T T T T T T
Predicted - - - - - Target
10
(1t I fltt I
U AR RN A nnnauantnnnunartnnrf T |
st M AR AR LR B ERL AR A AARAARRRR A AR
‘l 1 i
20 il | WA
| N | f T I
I POV iy I
10 —
|
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time Step
(g) Prediction curve for Lorenz System z(#)
x10°*
4 T T T T T T T T
0 0 1000 00 2000 200 000 @00 w00 a0 5000

Time Step

(i) Absolute error curve for Lorenz System z()

17

1600
1400
1200
1000

800

600
100

200

0

15 -1 0 05 15

05
Absolute Error x107

(b) Histogram of errors for Lorenz
System x(t)

1200

1000

800

600

400

200

0
-4 3 2 1 0 1 2 3
Absolute Exror X107

(e) Histogram of errors for Lorenz
System y()

1500

1000

500

0
6 5 4 3 2 -1 0 1 2
Absolute Error

(h) Histogram of errors for Lorenz

3
X107

System z(f)

Table 5: Details of the experimental setup for the Rossler system

Parameter Value
Number of samples 12700
Initial state [1,1,1]
Step size 0.03

Number of discarded samples 7700
Number of training samples 3000
Number of validation samples 1000
Number of test samples 1000

based on L, regularization (L, ,,ESN) [40], adaptive elastic ESN (AEESN) [[11], and hybrid reg-
ularized ESN (HESN) [S)]. The parameters settings of the mentioned algorithms were the same as
[S], and the results were averaged over twenty runs, again similar to [5]. In chaotic time series,
the largest predictable horizon is relevant to the largest Lyapunov exponent [5]. The chaotic time
series’ predictable horizon was estimated using the inverse of the largest Lyapunov exponent as

expressed by (23).

1
Nmax = 77— (25)

lmax

where /.« denotes the largest Lyapunov exponent and 7,,,x denotes the predictable horizon [3]].
Same as [5], we used the Wolf method to compute /,,x. For the Rossler system, [, is 1.18, so the
predictable horizon can be computed using (25): nm.x = 1/1.18 = 0.847. Since the step size for
the Rossler system is set to 0.03, the predictable step 1s 0.847/0.03 = 28. So, for Rossler system,
the predictable horizons were considered from 1 to 28. Table[6] shows multi-step ahead prediction
results of the Rossler time series.

Fig. [5] shows the relationship between prediction errors and prediction horizons for different
methods.

LESN
LESN
1L EESN
L1 ,ESN
AEESN
HESN
MFRENN
i 't

Prediction Horizon

Figure 5: Relationship between prediction errors and prediction horizons for different methods (Rossler System).

5.3. Box-Jenkins Gas Furnace Problem

Box-Jenkins gas furnace is a well-known time series forecasting problem in which the output
CO; concentration is predicted using the input oxygen flow rate [30]. Same as [30], the forecasting

18

Table 6: Multi-step-ahead prediction RMSE comparison on the Rossler System-x(f) series

. MFRFNN MFRFNN
horizon L;ESN L,ESN EESN L;»,ESN AEESN HESN (Discrete States) (Continuous States)
avg std avg std

7.20E-03 7.60E-03 6.60E-03 7.90E-03 6.90E-03 5.40E-03 3.98E-04 6.97E-04 2.65E-04 3.63E-04
1.34E-02 1.35E-02 1.44E-02 1.56E-02 1.28E-02 1.05E-02 5.05E-04 5.03E-04 5.77E-04 7.09E-04
1.95E-02 2.05E-02 2.02E-02 2.88E-02 2.01E-02 1.59E-02 1.43E-03 1.03E-03 8.80E-04 5.49E-04
2.69E-02 2.92E-02 2.63E-02 4.79E-02 2.89E-02 2.23E-02 3.14E-03 2.06E-03 1.52E-03 6.60E-04
3.66E-02 4.01E-02 3.54E-02 7.09E-02 4.03E-02 3.05E-02 3.36E-03 8.84E-04 3.04E-03 1.32E-03
5.03E-02 5.47E-02 4.71E-02 9.91E-02 5.47E-02 4.14E-02 6.48E-03 4.57E-03 4.40E-03 1.43E-03
6.78E-02 7.36E-02 6.25E-02 1.31E-01 7.29E-02 5.57E-02 7.24E-03 1.81E-03 6.94E-03 2.10E-03
9.06E-02 9.77E-02 8.19E-02 1.67E-01 9.49E-02 7.38E-02 1.02E-02 2.58E-03 9.50E-03 3.20E-03
1.17E-01 1.27E-01 1.06E-01 2.07E-01 1.21E-01 9.61E-02 1.23E-02 1.75E-03 1.25E-02 3.06E-03
10 1.50E-01 1.62E-01 1.34E-01 2.49E-01 1.52E-01 1.23E-01 2.25E-02 1.33E-02 1.79E-02 7.99E-03
11 1.85E-01 2.03E-01 1.66E-01 2.94E-01 1.86E-01 1.53E-01 2.62E-02 1.01E-02 1.91E-02 4.73E-03
12 2.26E-01 248E-01 2.02E-01 3.41E-01 2.24E-01 1.87E-O1 3.24E-02 9.49E-03 2.78E-02 1.09E-02
13 2.70E-01 2.99E-01 2.42E-01 3.90E-01 2.66E-01 2.25E-01 4.71E-02 2.59E-02 3.31E-02 6.81E-03
14 3.19E-01 3.54E-01 2.85E-01 4.41E-01 3.11E-01 2.66E-01 5.09E-02 3.27E-02 3.56E-02 5.42E-03
15 3.69E-01 4.13E-01 3.31E-01 4.92E-01 3.59E-01 3.10E-01 7.78E-02 6.15E-02 4.78E-02 1.37E-02
16 4.24E-01 4.75E-01 3.80E-01 5.45E-01 4.08E-01 3.56E-01 8.19E-02 4.19E-02 5.24E-02 9.36E-03
17 4.81E-01 5.40E-01 4.31E-01 5.98E-01 4.60E-01 4.03E-O1 9.17E-02 5.37E-02 6.93E-02 1.38E-02
18 5.40E-01 6.06E-01 4.84E-01 6.51E-01 5.12E-01 4.52E-01 1.15E-01 7.04E-02 8.14E-02 1.02E-02
19 6.01E-01 6.73E-01 5.38E-01 7.04E-01 5.65E-01 5.01E-O1 1.54E-01 1.46E-01 8.50E-02 1.13E-02
20 6.64E-01 7.40E-01 5.92E-01 7.56E-01 6.17E-01 5.51E-01 1.74E-01 1.03E-01 1.01E-01 1.73E-02
21 7.27E-01 8.07E-01 6.47E-01 8.08E-01 6.69E-01 5.99E-O1 1.90E-01 1.30E-01 1.20E-01 2.91E-02
22 7.93E-01 8.72E-01 7.02E-01 8.59E-01 7.19E-01 6.47E-O1 2.05E-01 1.47E-01 1.48E-01 4.23E-02
23 8.58E-01 9.35E-01 7.56E-01 9.10E-01 7.68E-01 6.93E-O1 2.35E-01 1.55E-01 1.87E-01 8.19E-02
24 9.25E-01 9.95E-01 8.10E-01 9.60E-01 8.14E-01 7.37E-01 3.64E-01 2.62E-01 2.49E-01 1.16E-01
25 991E-01 1.05E+00 8.62E-01 1.01E+00 8.58E-01 7.79E-O1 3.82E-01 2.51E-01 3.20E-01 1.82E-O1
26 1.06E+00 1.10E+00 9.12E-01 1.06E+00 8.99E-01 8.19E-01 5.17E-01 2.97E-01 3.43E-01 1.56E-01
27 1.12E+00 1.15E+00 9.61E-01 1.10E+00 9.37E-01 8.55E-01 5.32E-01 2.84E-01 3.75E-01 2.63E-01
28 1.19E+00 1.20E+00 1.01E+00 1.15E+00 9.72E-01 8.89E-01 5.59E-01 2.68E-01 4.43E-01 2.16E-0O1

O 01N N B WK =

problem can be represented by (26)).

$@) = fOy(t = 1), u(r)) (26)

Where u(t) and y(¢) denote the oxygen flow rate and CO, concentration rate, respectively. The
dataset consists of 290 samples, 200 of which were used as the training set, and the remaining
90 samples were used as the test set. To assess the performance of MFRFNN on real-world time
series, we compared its performance with three state-of-the-art RFNNs, including NFIS-DN [27],
SPATFIS [26]], and BaNFIS (global BaNFIS and local BaNFIS) [30]. Moreover, five other FNNs
were used for comparison: eTS [44]], SAFIS [45], McFIS [46], PANFIS [47], and GENEFIS [48]].
Table [/| presents the one-step-ahead prediction results of the Box-Jenkins gas furnace problem.

5.4. Wind Speed Prediction Problem

The wind speed prediction problem is a non-linear, dynamic, and volatile problem in which
the future value of wind speed is predicted using the current wind speed and wind direction. The

19

Table 7: One-step-ahead prediction error comparison on the Box-Jenkins gas furnace problem

Method RMSE MSE MAE
eTS 0.049 0.002 0.034
SAFIS 0.071 0.005 0.047
MCcFIS 0.045 0.002 0.028
PANFIS 0.070 0.005 0.048
GENEFIS 0.050 0.003 0.034
NFIS-DN 0.046 0.002 0.033
SPATFIS 0.050 0.003 0.036
Global BaNFIS 0.043 0.002 0.029
Local BaNFIS 0.063 0.004 0.049
MFRFNN avg 0.039 0.002 0.028
(Discrete States) std (4.53E-04) (3.52E-05) (6.09E-04)
MFRFNN avg 0.037 0.001 0.026

(Continuous States) std 1.48E-03 (1.10E-04) (1.04E-03)

dataset is obtained from the lowa Department of Transport’s websiteﬂ The data was collected from
the Washington station during a one-month period (February 2011), sampled every ten minutes,
and averaged hourly. There are 500 samples in the training set and 1000 samples in the test set
[30]. This dataset is more challenging than the Box-Jenkins dataset due to the existence of noise.
This experiment compared the proposed method’s performance with the same algorithms we used
in the Box-Jenkins dataset. The results are given in Table [§]

Table 8: One-step-ahead prediction error comparison on the wind speed prediction problem

Method RMSE MSE MAE
eTS 0.380 0.144 0.262
SAFIS 0.376 0.141 0.257
MCcFIS 0.230 0.052 0.165
PANFIS 0.190 0.036 0.131
GENEFIS 0.153 0.023 0.105
NFIS-DN 0.150 0.022 0.106
SPATFIS 0.146 0.021 0.101
Global BaNFIS 0.136 0.018 0.099
Local BaNFIS 0.133 0.017 0.097
MFRFNN avg 0.070 0.005 0.048
(Discrete States) std (1.57E-03) (2.19E-04) (1.03E-02)
MFRFNN avg 0.067 0.005 0.048

(Continuous States) std (8.96E-04) (1.21E-04) (1.17E-03)

5.5. Stock Price Prediction Problem

Stock price prediction is a non-linear and highly volatile problem. In this problem, the future
value of Google stock price is predicted using the current price as defined by (27).

(@) = fy(z = 1)) (27)

Thttp://mesonet.agron.iastate.edu/request/awos/1min.php

20

The dataset was obtained from Yahoo FinanceE] during a six-year period from 19-August-2004
to 21-September-2010 as in [30]. The training set consisted of 1529 samples, and the test set
900 samples. To evaluate the performance of MFRFNN on another real-world time series, we
compared its performance with the same RFNNs and FNNs used in Box-Jenkins and wind speed
prediction datasets. Table[9]shows the one-step-ahead prediction results of the Google stock price
prediction problem.

Table 9: One-step-ahead prediction error comparison on the Google stock price prediction problem

Method RMSE MSE MAE
eTS 0.070 0.005 0.047
SAFIS 0.071 0.005 0.051
MCcFIS 0.036 0.001 0.026
PANFIS 0.049 0.002 0.034
GENEFIS 0.036 0.001 0.025
NFIS-DN 0.030 0.001 0.019
SPATFIS 0.020 0.0004 0.015
Global BaNFIS 0.016 0.0003 0.011
Local BaNFIS 0.044 0.002 0.037
MFRFNN avg 0.017 0.0003 0.012
(Discrete States) std (4.03E-04) (1.39E-05) (3.32E-04)
MFRFNN avg 0.017 0.0003 0.012

(Continuous States) std (4.02E-04) (1.39E-05) (2.11E-04)

5.6. Air Quality Index Prediction Problem

In this experiment, we employed the air quality index (AQI) dataset [S7] to evaluate the per-
formance of MFRFNN in a real-world multi-step ahead prediction task. The AQI dataset was
obtained from 12 observing stations around Beijing from 2013 to 2017, containing extremely fre-
quent and drastic fluctuations. The dataset consisted of 35,064 samples, which were collected
hourly for 1461 days. Each sample comprised six major pollution components, including fine par-
ticulate matter (PM, 5), respirable particulate matter (PM;), sulfur dioxide (SO,), nitrogen dioxide
(NO,), carbon monoxide (CO), and ozone (O3) [57, 158]]. Same as [58]], the first 22800 samples
(950 days) were used as the training set, 1200 samples (50 days) as the validation set, and 1200
samples as the test set. Also, four input steps were used as the input sequence.

In order to sustain the effectiveness of the proposed method in time series prediction, we
compared its performance with five traditional machine learning models, including decision tree
(DT), random forest (RF), support vector regression (SVR), multilayer perceptron (MLP), and
long short-term memory (LSTM). We also considered some extensions of LSTM, including the
nested LSTM (NLSTM) [59] and the stacked LSTM (SLSTM) [60], for comparison. Moreover,
MFRFNN was compared with hybrid models incorporating various LSTM extensions and pre-
processing methods, such as empirical mode decomposition (EMD) [61]], variational mode de-
composition (VMD) [62], and wavelet transform (WT) [63]. Furthermore, MTMC-NLSTM [38§]
was used as a state-of-the-art model for comparison. The experimental setup and parameters used

Zhttp://finance.yahoo.com

21

for the mentioned methods were the same as [38]. Twenty independent runs were performed for
each method, and the averages and standard deviations were reported in Tables Table
and [T|present the five-step-ahead prediction results of the AQI dataset. Ten-step-ahead prediction
results of the AQI dataset were reported in Table @ and Table @ Moreover, to evaluate whether
the performance of a method was statistically significant, a two-tailed Welch’s ¢-test with a 0.05
significance level was applied. The Welch’s ¢-test was applied for RMSE between MFRFNN and
other methods, and the obtained p-value was reported. As can be seen, all the results were sta-
tistically significant. Table [I4] compares the number of parameters and average training time of
different methods.

Table 10: Five-step-ahead prediction error comparison on the AQI dataset (PM, 5, PM;g, and SO,)

Method PMas PM, SO,
RMSE MAE p-value RMSE MAE p-value RMSE MAE p-value
b (130502 (4016-03) * 6% (415.02) (048503 * 1557 (5.595-03) (340803 |07
R 10509 (1765-03) 2B S 05E03) 21E0%) HEH (1$35.03) (172803 020
(0.00E+00) (0005+00)> 7% 0,00E+00) (0.00E+00) 357 (0. 008400) 0:00E +00) >~
MDA 205 L SEN e L L2E oo
LSTM (gigg:g:ls) (igg:g;) 7-90E-62 (g:?gggé) (gjﬁg‘ﬁjg;) 8.83E-39 (Zéig:g;) (gf)?gg;) 3.20E-42
svpism O A0 g L SR s (DL D Lok
WTLSTM (g:ggg:g;) (?:gigigé) 6.24E-58 éig?gigé) éjﬁéﬁﬁgg 8.68E-29 (Sjéiﬁigé) (gggg:g;) 2.45E-49
LT AOEN SO iy (EDL SO e UL 1T e
NoTM O AL 55 S SHED sy THESL BTED oy
EMDNLSTM (0000, (i07E-02) 29527 (16om.02) (1e8E02) *1 253 (1335-02) (879603 745540
WENLSTM ("0 001 (171802 *TE %0 (1 175.02) (1115-02) 533 (7408.03) (6 82503 |0
st ST B0 g5 S HOEDL g SIS ITOE0L 3 6
SLSTM. (105 02) (266500 “%F 9 (1208.02) (141E.02) "5 (1 308.0) (8385 03) 1140
vstm [A0S s S SRS sy 12060 0L oo
WESLSTM (75 00) 2026-02) >258 (1 536.00) (1.10.02) #4532 (1 34E.02) (1 056.02) MO8
VMD-SLSTM (%ng:g;) (;:gzltg:gé) 4.78E-40 5132528% (}igig:gé) 3.07E-22 (?giggé) (éiggg:g;) 3.08E-44
MTMCNLSTM GS0E0) s08-02) "5 2 (200 2.52602) 825 (ask02) (1758.00) 77577
MERENN 1.08E-01 4.90E-02] 8.60E-02 5.17E-02) 6.17E-02 3.26E-02
(1.10E-02) (1.53E-03) (2.73E-04) (2.41E-04) (4.62E-03) (4.36E-04)

22

Table 11: Five-step-ahead prediction error comparison on the AQI dataset (NO,, CO, and O3)

Method

NO, CO 0;

RMSE MAE p-value RMSE MAE p-value RMSE MAE

1.13E+00 8.34E-01 7 89E-46 1.58E+00 9.80E-01 2 29E-48 7.93E-01 5.39E-01

(5.21E-03) (2.83E-03) (1.81E-02) (9.37E-03) (9.61E-03) (4.67E-03)

8.51E-01 6.60E-01 3.21E-50 1.27E+00 7.99E-01 1 33E-72 5.19E-01 3.94E-01

(2.71E-03) (2.58E-03) (7.19E-03) (3.14E-03) (4.38E-03) (3.15E-03)

7.87E-01 5.85E-01 1.40E+00 8.09E-01 3.85E-01 2.82E-01

SVR (0.00E+00) (0.00E+00) > *7E02 (0.00E+00) (0.00E+00) I 72E+ (0.00E+00) (0.00E+00)

7.97E-01 6.14E-01 1.19E+00 7.44E-01 4.31E-01 3.52E-01

MLP (0.00E+00) (0.00E+00) >**E62 (0.00E+00) (0.00E+00) >02E*2 (0.00E~+00) (0.00E+00)

8.09E-01 6.26E-01 1.23E+00 7.64E-01 447E-01 3.62E-01

LSIM (1.60E-02) (2.00E-02) 5-34E-33 (2.94E-02) (1.50E-02) 8.46E-35 (2.91E-02) (2.54E-02)

6.62E-01 5.02E-01 1.18E+00 7.33E-01 345E-01 2.59E-01

EMD-LSTM 5 20B02) (2.66E-02) >*E28 (2.78E-02) (1.538-02) 237 (2.78E-02) (3.05E-02)

6.92E-01 5.31E-01 1.09E+00 6.68E-01 3.45E-01 2.77E-01

WELSTM - 88E-02) (1.78E-02) 7750 (3.50E-02) (1.95E-02) “F1 (2.68E-02) 271E-02)

2.82E-01 2.09E-01 5.16E-01 3.02E-01 1.41E-01 1.14E-01

VMD-LSTM 3 475 02) (2.68E-02) 21015 3.618-02) (1.41E-02) > 77E22 (430E-02) (4.23E-02)

8.06E-01 6.21E-01 1.23E+00 7.65E-01 4.40E-01 3.57E-01

NLSTM (1.39E-02) (2.058-02) +O1E3% (4 40802 (2.10E-02) Z2F 2 (1518-02) (1.74E-02)

6.60E-01 4.97E-01 1.17E+00 7.21E-01 3.08E-01 2.14E-01

EMD-NLSTM) 78E.02) (2.10E-02) >3E30 2. 148-02) (1.04E-02) 20440 (6.90E-03) (3.82E-03)

6.87E-01 5.22E-01 1.09E+00 6.72E-01 3.53E-01 2.87E-01

WENLSIM 1 00E-02) (1.57E-02) V23E3 (7.37E-02) (4.02E-02) **F2 (1.14E-02) (1.35E-02)

2.62E-01 1.97E-01 5.62E-01 3.17E-01 1.41E-01 1.14E-01

VMD-NLSTM 1 638-02) (1.31E-02) 138E20 (3.33E-02) (1.69E-02) 31 (4.60E-02) (4.61E-02)

8.24E-01 6.44E-01 1.25E+00 7.80E-01 4.25E-01 3.38E-01

SLSTM (3.01E-02) (3.71E-02) 0-46E-28 (5.46E-02) (3.92E-02) 2-83E-27 (8.67E-03) (1.37E-02)

6.28E-01 4.63E-01 1.20E+00 7.50E-01 343E-01 2.45E-01

EMD-SLSTM 5 308-02) (2.86E-02) %527 (3.82E-02) (2.08E-02) "' (8.57E-02) (8.07E-02)

6.99E-01 5.41E-01 1.08E+00 6.60E-01 3.53E-01 2.87E-01

WESLSTM 1 075 02) (1.888-02) "O%E 3 (4.838-02) (3.02E-02) #22E27 (1.97B-02) (2.28E-02)

2.52E-01 1.93E-01 4.98E-01 2.95E-01 1.10E-01 8.43E-02

VMD-SLSTM 5 39E.02) (2.198-02) ®1PE 17 (3.076-02) (1.448-02) 127E23 (6.73E-03) (6.99E-03)

5.88E-01 4.29E-01 8.41E-01 4.89E-01 3.51E-01 2.56E-01

MIMC-NLSTM 5 96E-02) (2.338-02) $7°E2 (5.23E-00) (2.55E-02) *P3E 2 (2.25E-02) (1.85E-02)

MFRFNN

1.02E-01 7.82E-02 1.48E-01 9.17E-02 S5.18E-02 3.81E-02

5.7. Sensitivity Analysis
We performed a sensitivity analysis in this section to further strengthen this study. The pa-

rameters used in sensitivity analysis are as follows: Number of states and number of MFs in each
dimension. The number of MFs was considered equal for both networks (i.e., output network and
state network), and from 2 to 5 in each dimension. The number of states ranged from 1 to 15, so
60 independent experiments were performed, and the NRMSE was computed for MFRFNN with
continuous states. The Lorenz time series and Box-Jenkins gas furnace problem were used as the
benchmark in the aforementioned experiments. Fig. [6] shows the relationship between NRMSE,

23

(4.42E-04) (4.67E-04)) (7.89E-03) (3.40E-03) i (2.03E-03) (1.77E-03)

Table 12: Ten-step-ahead prediction error comparison on the AQI dataset (PM, 5, PM;, and SO;)

Method PM, PMjo SO,
RMSE MAE p-value RMSE MAE p-value RMSE MAE
bT (17%232?8;)) (i:ggg:gé) 4.99E-52 (2.39991;:;83) éiggﬁi%) 9-65E-48 (19'.12791;82) (;iggg;)
R 57609 @080 OB S17603) (313503 12E (190 03) (111E03)
SVR ((1):(2)85188) (g.g(());%t)) 1.84E-52 ((1):(1)(2)5188) (gggg;%i» 4.96E-69 ((?.'(}815;%%)) (3.&)21]55;%1())
MLP (0.005+00) 0/00E 00 52 /008:+00)(0.00E100) > (0.00E +00) (0.00E+00)
LSTM om0 (154802 5 Goinon (7E02) 2FY 103k 02) (603509
EMD-LSTM (11..1178];:;(());)) (Z:gfg:gé) 249E-38 (15'.(3&2];:;(()?) (?iigg:g;) 1.57E-44 (gifgg:gé) (;(1)25:8;)
WILSTM (12'.13?15;(?;)) (?gig:gé) 1.67E-33 (11..%79];())5) (?i?gg:gé) 1.12E-36 (2:841;5:8;) (2:1(5)5:8;)
VMDLSTM (10 0y (a7E-02) 50 (6302 702609 >3F (116E.02) (808,09
NLSTM a0 (1.52.02) 29 (U ganon 17se02) "E a0k 02) (137500
EMD-NLSTM (61505, (1 66E-02) 23533 (530809 (1.17E.02) %41 (106E02) (6 645,03
WENLSTM (o) (1 73E-02) 3830 (434503 (123E.02) 546 (6 37E.03) (203603
VMD-NLSTM (Sﬁgggigé) (;ﬁg:g;) 4.99E-25 (iﬁg:gé) é:gég:gé) 1.44E-30 (Zslggg:gé) (i:;ig:gé)
SLSTM ({050 (.176-02) 3! (520503 (1 34E.02) > (1 34E-02) (849,03
EMD-SLSTM ('t 05) (3196-02) 537 (ose.0m) (1.616-02) 291 (1 08E.02) (747603
WI-SLSTM (11'.16‘;];:3-1-(?;)) (?izgg:gé) 9-39E-37 (17..(3176]]5;(());)) (S:Ziggé) 0.84E-42 (;(g)zg:g;) (giggg:gé)
s SOES SR soiean ST LS s (AL 200
et (7D 0L arieas e S0 aosas SR S
MERENN 1.13E-01 6.44E-02] 1.07E-01 6.77E-02] 6.45E-02 3.91E-02
(2.31E-03) (3.88E-04) (2.89E-04) (2.65E-04) (1.76E-03) (3.84E-04)

24

Table 13: Ten-step-ahead prediction error comparison on the AQI dataset (NO,, CO, and O3)

Method NO: co Os

RMSE MAE p-value RMSE MAE p-value RMSE MAE p-value
bT (2.3571?8;)) (2269?(());)) 2:22E-51 (18;%%83) (ﬂli)%%fgg) 1.OSE-61 é’%%f% (Ziiggg;) 9-09E-61
R (336509 (196503 7750 (5.365-03) (471803 *F T (Soe03) (3.356-03) B
SVR ((1):835188) ((Z.gé;%t)) 1.80E-58 ((1):8(1)5188) ((?.gg}g;%i)) 5-208-49 ((i'(}g]i%t)) (g.ggEE;%IO) 479837
MLP ((l):gggigg) ((?.ggg;%lm 2.76E-58 (é:gggigg) (3?33%1)) 1.35E-48 (S.SSS;%B) (3535;%10) 2.06E-39
LSTM (R0 (168.02) 255 (ssron 181E02) “OF (e 0z) 27dpon 12
visne OB T g T DD s SO0 HENL 1oor g
WI-LSTM 322?53% (Z:zég:gé) 1.52E-33 (17%1)?(())5) (giggg:gé) 3-89E-26 é:ggg:g;) (iggg:g;) 342E-29
s ST ST aoeas (DL S e 2EGL 20E0 a0
NLSTM (e lsE02) 9B Gosnon @702 OF GisaE02) (224809 63920
EMD-NLSTM 5 00 09y 202602) *5F 5 (Gsamon) (1.635-02) 572 (1 E.02) (1m0 1B
WENLSTM 766t 03y ase.08) 5B 1150 (122602) 25 (0igak 02) (229800 * 14577
VMD-NLSTM (Ziggg:g;) (gégg:gé) 0.48E-22 (gégg:gé) (;;gg:gé) 2.58E-21 é;gg:g;) (iigg:g;) 6.24E-20
SLSTM ([705.02) (1:305-02) "STEH (5008.02) (2.39E.02) *F2 (1 535-02) (1 296.02) 7104
vstsmn 2T PSEOL g I D50 5w UL 2080 s
WI-SLSTM (?:Zgg:g;) (Z:Egg:gé) 2.74E-36 (13.271]]5;(())5) (?iggg:gé) 5-98E-32 (;(s)ig:g;) éjfggigé) 1.26E-26
s SO TG gaieas SBEDL S s S LD e
et $OIEDL SHED] oo as GUEO SHEL samss SEEL 1TEC 2o
MERENN 1.26E-01 1.01E-01] 1.82E-01 1.17E-01] 6.59E-02 4.85E-02

(9.17E-04) (6.89E-04) (4.61E-03) (2.17E-03) (4.86E-03) (2.88E-03)

25

Table 14: Comparison of the number of parameters and average training time

Method Number of Parameters Average Training Time (s)
LSTM 42,197 163.7
EMD-LSTM 42,197 453.4
WT-LSTM 42,197 677.53
VMD-LSTM 50,977 650.47
NLSTM 50,977 166.86
EMD-NLSTM 50,977 451.81
WT-NLSTM 50,977 672.71
VMD-NLSTM 50,977 682.59
SLSTM 182,081 378.42
EMD-SLSTM 182,081 1101.78
WT-SLSTM 182,081 1777.79
VMD-SLSTM 182,081 1891.42
MTMC-NLSTM 345,030 211.91
MFRFENN 64 236.74

NRMSE

16
x107%
2 14
15 12
1
10
0.5
8
0
2 6
E 4
15
4 2
10
5

Number of MFs I
5 9 Number of States

Figure 6: Relationship between NRMSE, the number of MFs, and the number of states of the one-step-ahead predic-
tion of the Lorenz time series.

the number of MFs, and the number of states for the one-step-ahead prediction of the Lorenz time
series. As can be seen, when MFRFNN employed one state, the NRMSE was high, because in this
case, MFRFNN had no feedback loop, so it can not memorize historical information of the time
series. In Fig. [6] when the number of states increased from 2 to 9, MFRFNN did not have high
sensitivity to parameters, but when the number of states exceeded 9, NRMSE tended to increase
with the increase of states. Moreover, when the number of states was large (i.e., ten and more), the
performance strongly depended on the number of MFs and the number of fuzzy rules. Table [I3]
presents the NRMSE of the various number of states and MFs for the one-step-ahead prediction
of the Box-Jenkins gas furnace problem. As can be seen, when the number of states and MFs was
low, MFRFNN did not have high sensitivity to parameters. As the number of states and MFs in-
creased, the number of parameters of the model increased, and the model’s generalization started
to deteriorate. As a result, the NRMSE on the test set increased.

26

Table 15: NRMSE for one-step-ahead prediction of the Box-Jenkins gas furnace problem

#States/#MFs 2 3 4 5
1 5.10E-02 5.23E-02 5.10E-02 5.25E-02
2 3.34E-02 3.58E-02 3.58E-02 4.05E-02
3 3.04E-02 3.44E-02 3.87E-02 4.30E-02
4 3.51E-02 3.51E-02 4.41E-02 5.05E-02
5 3.64E-02 4.38E-02 4.75E-02 6.24E-02
6 3.88E-02 4.49E-02 5.25E-02 8.61E-02
7 4.54E-02 5.10E-02 6.73E-02 9.16E-02
8 4.30E-02 5.00E-02 8.18E-02 1.42E-01
9 4.66E-02 5.33E-02 9.08E-02 2.24E-01
10 4.59E-02 5.25E-02 1.34E-01 2.61E-O1
11 4.61E-02 5.91E-02 1.61E-01 2.83E-01
12 4.77E-02 5.14E-02 1.90E-01 5.18E-01
13 4 81E-02 7.23E-02 2.86E-01 4.01E-01
14 4.24E-02 8.23E-02 3.41E-01 6.38E-01
15 5.13E-02 8.54E-02 3.65E-01 4.07E-01

5.8. Ablation Study

In this section, we present an ablation study to demonstrate the impact of feedback loop be-
tween two networks (i.e., output network and state network) in the structure of MFRFNN with
continuous states. We repeated the experiments on Lorenz and Rossler by MFRFNN without a
feedback loop to conduct this study. In other words, we used the proposed structure with the same
number of fuzzy rules but with just one state. We also evaluated MFRFNN without a feedback
loop on real-world datasets. For the AQI dataset, the models were evaluated by a ten-step-ahead
prediction task. To assess whether the results were statistically significant, a two-tailed Welch’s
t-test with a 0.05 significance level was applied for RMSE, and the obtained p-value was reported.
Table [[6] compares MFRFNN’s performance with and without a feedback loop on the Lorenz and
Rossler time series. Note that in the experiments with a feedback loop, the experimental setups
were the same as in Table 2] As can be seen in Table [I6] MFRFNN with feedback loop obtained
lower RMSE and SMAPE in all experiments. Also, based on the statistical tests, the p-value was
lower than the specified significance level (i.e., 0.05), giving statistically significant results. Table
presents the comparison of MFRFNN’s performance with and without a feedback loop on real-
world datasets. As shown in Table MFRFNN with a feedback loop obtained lower RMSE
and MAE in all experiments except AQI-PM;, and AQI-SO,. For AQI-PM, the result was not
considered statistically significant based on the statistical test. For AQI-SO,, MFRFNN without a
feedback loop obtained lower MAE. This may be because of the simplicity of the prediction task
in this experiment. As a result, MFRFNN with one state (i.e., without a feedback loop) obtained
better generalization and lower MAE. Note that MFRFNN with a feedback loop used only two
states in this experiment. Based on the results, it is obvious that using the feedback loop and
multiple states in the proposed method was substantially beneficial.

5.9. Comparison of Different Metaheuristic Algorithms
As mentioned, the link weight matrix of the state network can not be obtained by the linear
least-squares method. So, MFRFNN uses PSO to learn parameters of V. However, any other

27

Table 16: Comparison of MFRFNN’s performance with and without a feedback loop (Lorenz and Rossler)
With Feedback Loop Without Feedback Loop
RMSE SMAPE RMSE SMAPE
Lorenz System x(¢) 2.44E-05 7.27E-07 1.53E-04 8.01E-06 3.60E-26
Lorenz System y(r) 3.58E-04 1.40E-05 4.87E-03 2.38E-04 8.86E-41
Lorenz System z(t) 4.36E-04 4.79E-06 2.22E-03 2.90E-05 2.40E-31
Rossler System x(f) 6.22E-07 1.15E-08 2.78E-06 7.30E-08 2.56E-16
Rossler System y(r) 1.49E-09 2.92E-11 6.99E-09 1.84E-10 1.55E-17
Rossler System z(r) 1.47E-04 2.47E-05 8.29E-04 1.57E-04 8.55E-22

Benchmark p-value

Table 17: Comparison of MFRFNN’s performance with and without a feedback loop (Real-world datasets)
With Feedback Loop Without Feedback Loop
RMSE MAE RMSE MAE
AQI-PM; 5 1.13E-01 6.44E-02 1.18E-01 6.69E-02 8.86E-09
AQI-PM ;g 1.07E-01 6.77E-02 1.07E-01 6.92E-02 1.00E+00
AQI-SO, 6.45E-02 391E-02 6.80E-02 3.79E-02 3.36E-08
AQI-NO, 1.26E-01 1.01E-01 1.31E-01 1.06E-01 8.44E-16
AQI-CO 1.82E-01 1.17E-01 1.98E-01 1.23E-01 3.01E-12
AQI-O; 6.59E-02 4.85E-02 7.34E-02 6.29E-02 1.40E-06
Google Stock 1.73E-02 1.20E-02 1.22E-01 7.37E-02 1.40E-47
Box-Jenkins 3.68E-02 2.60E-02 5.23E-02 4.07E-02 4.27E-21
Wind Speed 6.72E-02 4.77E-02 7.03E-02 5.29E-02 3.18E-12

Benchmark p-value

metaheuristic algorithm can be used instead of PSO. In this section, we employed different meta-
heuristic algorithms to train MFRFNN. These algorithms include Artificial Bee Colony (ABC)
[64]], Ant Colony Optimization for Continuous Domains (ACOR) [65]], Bees Algorithm (BA) [66]],
Biogeography-based Optimization (BBO) [67]], Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [68], Differential Evolution (DE) [69], Firefly Algorithm (FA) [[/0], Genetic Algo-
rithm (GA) [71], Harmony Search (HA) [/2], Imperialist Competitive Algorithm (ICA) [73], In-
vasive Weed Optimization (IWO) [[74]], and Teaching-Learning-based Optimization (TLBO) [73]].
As mentioned, all entries of V are in the range [0, 1], so for all decision variables optimized by
metaheuristic algorithms, the lower bound is 0, and the upper bound is 1. Table [18| shows the
ten-step-ahead prediction results of AQI-SO; and the training time of each method.

5.10. State Functions

In this section, the functions learned by each state are illustrated to analyze the role of states in
MFRFENN. The experiment was conducted on the wind speed prediction dataset using the param-
eters of Table [2, MFRFNN with continuous states was used for this experiment. Fig. [7|shows the
functions learned by each state, the one-step-ahead prediction curve, and the target curve. As can
be seen, each state learned a different function, and the target output is a weighted sum of these
functions.

28

Table 18: Ten-step-ahead prediction error comparison of different metaheuristic algorithms on AQI dataset (SO,)
Method RMSE MAE Training Time (s) p-value

7.86E02 3.93E-02
ABC (1.16E-02) (4.96E-04) 235.47 1.43E-04

741E-02 4.00E-02
ACOR (1.0SE-02) (7.98E-04) 238.41 6.48E-04

8.04E-02 3.91E-02
BA (2.62E-02) (9.07E-04) 228.81 1.39E-02

8.06E-02 3.94E-02
BBO (1.85E-02) (8.04E-04) 236.16 9.93E-04

7.68E-02 3.92E-02
CMAES (150 000 (5.59E-04) 219.66 3.96E-04

727E-02 3.95E-02
DE (1.33E-02) (9.08E-04) 238.02 1.29E-02

7.84E-02 3.98E-02
FA (2.00E-02) (9.36E-04) 246.07 5.87E-03

8.30E-02 3.95E-02
oA (2.36E-02) (8.31E-04) 237.14 2.39E-03

7.36E-02 3.94E-02
HS (1.05E-02) (5.33E-04) 231.93 1.06E-03

7.80E-02 3.92E-02
ICA (139E-02) (7.79E-04) 241.08 3.55E-04

7.86E-02 3.91E-02
IWO @97E02) (LIIEA3) 235.99 4.74E-02
790E-02 3.96E-02
TLBO (1“4b02) (776E-04) 239.18 1.45E-03
MFRFNN 6.45E-02 3.91E-02

(PSO) (1.76E-03) (3.84E-04)

236.11 -

ind Speed

Wi

L L L L L L L L
0 10 20 30 10 50 60 70 80 90 100

Figure 7: Functions learned by each state, one-step-ahead prediction curve, and target curve for the wind speed
prediction dataset.

6. Discussion

In this paper, we evaluated the performance of MFRFNN on six different benchmarks. The
results of Lorenz time series experiments indicated that MFRFNN with continuous states out-
performed other methods in all three series. After this method, MFRFNN with discrete states
outperformed other methods in the x(¢) series. The prediction accuracy of RBLS closely followed
MFRFENN with continuous states in the y(¢) and z(7) series. Although MFRFNN with continuous

29

states outperformed the RBLS in all evaluation metrics, its standard deviation was higher than
RBLS. A higher standard deviation means a higher variance of the predictions, which is the draw-
back of MFRFNN. The results obtained by RBLS in the y(¢) and z(7) series were closely followed
by ESN. The good performance of RBLS is due to the recurrently connected nodes in its enhance-
ment units, allowing it to capture the dynamic behavior of the Lorenz time series. As can be seen
from Table 4} the e-SVR method had the worst performance on all metrics, and its standard devia-
tion was zero because there was no randomness in this algorithm. Fig. 4/ shows that the maximum
errors for the x(¢), y(¢), and z(¢) series do not exceed 2 x 107, 4.5 x 1073, and 7 x 1073, respec-
tively, which proves that the results obtained by MFRFNN with continuous states were acceptable.
Note that the prediction intervals for the mentioned series were [—20, 20], [-30, 30], and [0, 50],
respectively. Moreover, from histograms of errors, it can be seen that the absolute errors followed
a normal distribution, meaning that MFRFNN effectively captured the dynamic characteristics of
the Lorenz system due to its capability of learning multiple functions simultaneously.

In Rossler time series experiments, the results showed better performance of MFRFNN with
continuous states for the same prediction horizon compared to other methods. After MFRFNN
with continuous states, MFRFNN with discrete states had the lowest RMSE, closely followed by
HESN. We also noted that L;ESN and L,ESN had the worst accuracy in most cases. As can be
seen from Fig. [5] MFRFNN with continuous states had the lowest RMSE in various prediction
horizons. When the prediction horizon increased from 1 to 23, the RMSE difference between
MFRFNN with continuous states and HESN increased from 0.005 to 0.506. For the prediction
horizon of 24 to 28, the RMSE difference was 0.470 on average. The long-term prediction ability
of the proposed method can be explained by its structure. As mentioned, having a structure with a
feedback loop makes the model capable of memorizing historical information. Furthermore, using
multiple states helps the proposed method store past observations and track system dynamics in
larger prediction horizons.

The results of the Box-Jenkins gas furnace problem experiments showed that MFRFNN with
continuous states outperformed other methods in this dataset, closely followed by MFRFNN with
discrete states and global BaNFIS. Based on RMSE, MFRFNN with continuous states showed a
decrease of 19.57%, 26.00%, 13.95%, and 41.27% from the NFIS-DN, SPATFIS, global BaN-
FIS, and local BaNFIS, respectively. Based on MSE, MFRFNN with continuous states showed
a decrease of 50.00%, 66.67%, 50.00%, and 75.00% from the NFIS-DN, SPATFIS, global BaN-
FIS, and local BaNFIS, respectively. Based on MAE, MFRFNN with continuous states showed
a decrease of 21.21%, 27.78%, 10.34%, and 46.94% from the NFIS-DN, SPATFIS, global BaN-
FIS, and local BaNFIS, respectively. McFIS had the highest accuracy among FNNs. Roughly
speaking, RFNNs obtained better results compared to FNNs. Since FNNs do not have recurrent
connections, they could not learn temporal dependencies in this prediction task. Box-Jenkins time
series exhibit serial autocorrelation, and by plotting the partial autocorrelation function, it can be
seen that the first four lags are statistically significant [[76]. So, the future value depends on four
past observations. Therefore, the good performance of MFRFNN in this dataset can be explained
by its structure. Having a structure with a feedback loop makes the model capable of memorizing
past observations and using them to predict the future value. Note that as serial autocorrelation is
present in this dataset, it requires more past observation in its input space than in its latent space.
As aresult, global BaNFIS outperformed local BaNFIS in this experiment.

30

In the wind speed prediction dataset, MFRFNN with continuous states obtained the smallest
RMSE, MSE, and MAE. Based on RMSE, MFRFNN with continuous states showed a decrease
of 55.33%, 54.11%, 50.74%, and 49.62% from the NFIS-DN, SPATFIS, global BaNFIS, and
local BaNFIS, respectively. Based on MSE, MFRFNN with continuous states showed a decrease
of 77.27%, 76.19%, 72.22%, and 70.59% from the NFIS-DN, SPATFIS, global BaNFIS, and
local BaNFIS, respectively. Based on MAE, MFRFNN with continuous states showed a decrease
of 54.72%, 52.48%, 51.52%, and 50.52% from the NFIS-DN, SPATFIS, global BaNFIS, and
local BaNFIS, respectively. GENEFIS was the most accurate method among FNNs, and RFNNs
outperformed FNNs in all evaluation metrics. It is worth noting that local BaNFIS outperformed
global BaNFIS in this dataset. As aforementioned, the wind speed dataset is more challenging than
the Box-Jenkins dataset, so a method based on an autoregressive model is not capable of capturing
the dynamic characteristics of this time series. Moreover, we noted that although the €TS results
on the Box-Jenkins dataset were satisfying, it had the worst performance on all metrics for the
wind speed prediction dataset.

The results of Google stock price prediction indicated that global BaNFIS outperformed other
methods, closely followed by MFRFNN with continuous and discrete states. Based on RMSE,
global BaNFIS showed a decrease of 46.67%, 20.00%, and 5.88% from the NFIS-DN, SPATFIS,
and MFRFNN, respectively. The good performance of global BaNFIS in this dataset was due to
its capability to handle dynamics and use only required past observations in its prediction. Same
as wind speed prediction, GENEFIS outperformed other FNNSs in this experiment.

In five-step-ahead and ten-step-ahead prediction experiments on the AQI dataset, MFRFNN
achieved the best results in all components, closely followed by VMD-SLSTM. When the predic-
tion horizon increased from 5 to 10, the RMSE difference between MFRFNN and the second best
method in each component increased too. The increase in this difference varied from component
to component, rising from 0.239 to 0.425 for PM, s, from 0.231 to 0.450 for PM;, from 0.242 to
0.380 for SO,, from 0.150 to 0.482 for NO,, from 0.350 to 0.646 for CO, and from 0.058 to 0.184
for O3. The good performance of MFRFNN in this dataset can be attributed to the superiority of its
structure and the feedback loop between the output network and state network. Using two states in
these experiments makes MFRFNN capable of learning and tracking various behaviors of the AQI
time series with two separate functions (i.e., a single function for each state). Moreover, compar-
ing the same methods with and without decomposition showed a positive impact of decomposition
techniques on prediction results. Decomposition methods such as EMD and VMD decompose
time series into several intrinsic mode functions with a simpler structure and reduce the complex-
ity of time series. As a result, it could be predicted more easily than a high fluctuating time series.
Methods using VMD (i.e., VMD-NLSTM and VMD-LSTM) exhibited superior performance over
EMD-based methods. EMD’s inherent problems can explain the worse performance of EMD-
based methods. EMD has drawbacks such as endpoint effect, mode-mixing, sensitivity to noise,
and the need to choose a specific function for interpolation. Regarding the number of parameters
in this experiment, MFRFNN had the lowest number of parameters. The proposed network used
two states and 16 rules for each network, so it had 64 parameters (2 X 2 X 16). Note that MFRFNN
had the lowest number of parameters but not the lowest average training time. MFRFNN required
calculating fuzzy membership values in each iteration of the training algorithm, which increased
its computational cost. The LSTM had the lowest average training time. The average training time

31

increased with the increase of the number of parameters. MTMC-NLSTM had the highest num-
ber of parameters but not the highest average training time because it simultaneously created the
prediction model for different AQI components. From Table [T4] it is evident that pre-processing
methods increase the training time drastically, and VMD-SLSTM had the highest average training
time.

Finally, the results of comparing different metaheuristic algorithms indicated that based on
RMSE, the PSO algorithm outperformed other methods in the training of MFRFNN. Moreover,
BA, IWO, and PSO obtained the smallest MAE. The standard deviation of PSO was lower than
other metaheuristic algorithms. A lower standard deviation means a lower variance of predic-
tions and a more robust training algorithm. The good performance of the PSO algorithm, and
the key reason this method was used for training of MFRFNN, comes with its ability to handle
optimization problems with multiple local optima reasonably well and its global search capability.
CMA-ES and FA obtained the lowest and highest training time, respectively.

7. Conclusion

This paper proposed a novel multi-functional recurrent fuzzy neural network for chaotic time
series prediction. MFRFNN consisted of two FNNs with TSK fuzzy rules, one was used to pro-
duce the system’s output, and the other to determine the system’s state. The feedback loop between
these two networks made MFRFNN capable of learning and memorizing historical information of
past observations. Employing the states allowed the proposed network to learn multiple functions
simultaneously, resulting in capturing the dynamic behavior of the chaotic time series and predict-
ing long-term values of the time series. Moreover, a new learning algorithm, which employed the
PSO algorithm, was developed to train the weights of MFRFNN. The experimental results indi-
cated that, for the Lorenz time series, based on the RMSE, MFRFNN showed a 35.12% decrease
from the second best method (i.e., RBLS) on average. In the Rossler time series, when the pre-
diction horizon increased from 1 to 23, the RMSE difference between MFRFNN and the second
best method (i.e., HESN) increased from 0.005 to 0.506. For the Box-Jenkins gas furnace dataset
and wind speed prediction dataset, based on the RMSE, the proposed network showed a decrease
of 13.95% and 49.62% from the second best method, respectively. In the Google stock price pre-
diction task, MFRFNN was the second best method after the global BaNFIS. In the AQI dataset it
showed promising results and outperformed other methods in five-step-ahead and ten-step-ahead
prediction tasks. Overall, the experimental results showed that MFRFNN outperformed other
state-of-the-art methods for both chaotic benchmarks and real-world datasets and showed a good
performance in the long-term prediction of the Rossler system and AQI dataset. In future work,
we would like to incorporate time series decomposition methods into MFRFNN.

8. Code Availability

The source code of MFRFNN required to reproduce the predictions and results is available at
the public Github repository.

32

https://github.com/Hamid-Nasiri/Recurrent-Fuzzy-Neural-Network

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
[9]

(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

M. Han, K. Zhong, T. Qiu, B. Han, Interval type-2 fuzzy neural networks for chaotic time series prediction: A
concise overview, IEEE transactions on cybernetics 49 (7) (2019) 2720-2731.

C.Li, Z. Li, L. Guan, P. Qi, J. Si, B. Hao, Measuring the Complexity of Chaotic Time Series by Fuzzy Entropy,
in: Proceedings of the International Conference on Future Networks and Distributed Systems, 2017, pp. 1-7.
M. Xu, M. Han, C. L. P. Chen, T. Qiu, Recurrent Broad Learning Systems for Time Series Prediction, IEEE
Transactions on Cybernetics 50 (4) (2020) 1405-1417. |[doi:10.1109/TCYB.2018.2863020.

C.-H. Lee, F.-Y. Chang, C.-M. Lin, An efficient interval type-2 fuzzy CMAC for chaos time-series prediction
and synchronization, IEEE Transactions on Cybernetics 44 (3) (2014) 329-341.

M. Xu, M. Han, T. Qiu, H. Lin, Hybrid Regularized Echo State Network for Multivariate Chaotic Time Series
Prediction., IEEE transactions on cybernetics 49 (6) (2019) 2305-2315.

R. Castro, Y. M. Souto, E. Ogasawara, F. Porto, E. Bezerra, STconvS2S: Spatiotemporal convolutional sequence
to sequence network for weather forecasting, Neurocomputing 426 (2021) 285-298.

M. O. Alassafi, M. Jarrah, R. Alotaibi, Time series predicting of COVID-19 based on deep learning, Neurocom-
puting 468 (2022) 335-344.

R. d. A. Aratjo, N. Nedjah, A. L. I. Oliveira, R. d. L. Silvio, A deep increasing—decreasing-linear neural network
for financial time series prediction, Neurocomputing 347 (2019) 59-81.

M. Gan, C. L. Philip Chen, L. Chen, C.-Y. Zhang, Exploiting the interpretability and forecasting ability of the
RBF-AR model for nonlinear time series, International Journal of Systems Science 47 (8) (2016) 1868-1876.
E. Hadavandi, A. Ghanbari, S. Abbasian-Naghneh, Developing a time series model based on particle swarm
optimization for gold price forecasting, in: 2010 Third International Conference on Business Intelligence and
Financial Engineering, IEEE, 2010, pp. 337-340.

M. Xu, M. Han, Adaptive elastic echo state network for multivariate time series prediction, IEEE transactions
on cybernetics 46 (10) (2016) 2173-2183.

H.-G. Han, Z.-L. Lin, J.-F. Qiao, Modeling of nonlinear systems using the self-organizing fuzzy neural network
with adaptive gradient algorithm, Neurocomputing 266 (2017) 566-578.

0. Khayat, M. M. Ebadzadeh, H. R. Shahdoosti, R. Rajaei, I. Khajehnasiri, A novel hybrid algorithm for creating
self-organizing fuzzy neural networks, Neurocomputing 73 (1-3) (2009) 517-524.

G. Khodabandelou, M. M. Ebadzadeh, Fuzzy neural network with support vector-based learning for classifica-
tion and regression, Soft Computing 23 (23) (2019) 12153-12168.

A. Salimi-Badr, M. M. Ebadzadeh, A novel learning algorithm based on computing the rules’ desired outputs of
a TSK fuzzy neural network with non-separable fuzzy rules, Neurocomputing 470 (2022) 139-153.

T. Xie, F. Cao, The errors in simultaneous approximation by feed-forward neural networks, Neurocomputing
73 (4-6) (2010) 903-907.

J. Qiao, F. Li, H. Han, W. Li, Growing Echo-State Network With Multiple Subreservoirs, IEEE transactions on
neural networks and learning systems 28 (2) (2017) 391-404.

Q. Ma, S. Li, L. Shen, J. Wang, J. Wei, Z. Yu, G. W. Cottrell, End-to-end incomplete time-series modeling from
linear memory of latent variables, IEEE transactions on cybernetics 50 (12) (2019) 4908—4920.

Z. Li, G. Tanaka, Multi-reservoir echo state networks with sequence resampling for nonlinear time-series pre-
diction, Neurocomputing 467 (2022) 115-129.

X. Gong, T. Zhang, C. L. P. Chen, Z. Liu, Research Review for Broad Learning System: Algorithms, Theory,
and Applications, IEEE Transactions on Cybernetics (2021).

H. Wang, G. Song, Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire,
Neurocomputing 134 (2014) 289-295.

M. Ragab, Z. Chen, M. Wu, C.-K. Kwoh, R. Yan, X. Li, Attention-based sequence to sequence model for
machine remaining useful life prediction, Neurocomputing 466 (2021) 58—-68.

H.-G. Han, Z.-Y. Chen, H.-X. Liu, J.-F. Qiao, A self-organizing interval Type-2 fuzzy-neural-network for mod-
eling nonlinear systems, Neurocomputing 290 (2018) 196-207.

C.-F. Juang, Y.-Y. Lin, C.-C. Tu, A recurrent self-evolving fuzzy neural network with local feedbacks and its
application to dynamic system processing, Fuzzy Sets and Systems 161 (19) (2010) 2552-2568.

Y.-Y. Lin, J.-Y. Chang, N. R. Pal, C.-T. Lin, A mutually recurrent interval type-2 neural fuzzy system

33

https://doi.org/10.1109/TCYB.2018.2863020

[26]
(27]
(28]
(29]
(30]
(31]
(32]
(33]
[34]
(35]
(36]
(37]
(38]
(39]
[40]

[41]

(42]

[43]
[44]
[45]
[40]
[47]
(48]

[49]

(MRIT2NEFES) with self-evolving structure and parameters, IEEE Transactions on Fuzzy Systems 21 (3) (2013)
492-509.

S. Samanta, M. Pratama, S. Sundaram, A novel spatio-temporal fuzzy inference system (spatfis) and its stability
analysis, Information Sciences 505 (2019) 84-99.

S. Samanta, S. Suresh, J. Senthilnath, N. Sundararajan, A new neuro-fuzzy inference system with dynamic neu-
rons (nfis-dn) for system identification and time series forecasting, Applied Soft Computing 82 (2019) 105567.
C. Luo, C. Tan, X. Wang, Y. Zheng, An evolving recurrent interval type-2 intuitionistic fuzzy neural network for
online learning and time series prediction, Applied Soft Computing 78 (2019) 150-163.

H. Ding, W. Li, J. Qiao, A self-organizing recurrent fuzzy neural network based on multivariate time series
analysis, Neural Computing and Applications 33 (10) (2021) 5089-5109.

S. Subhrajit, P. Mahardhika, S. Sundaram, Bayesian Neuro-Fuzzy Inference System (BaNFIS) for Temporal
Dependency Estimation, IEEE Transactions on Fuzzy Systems 29 (9) (2021) 2479-2490.

R. Chandra, M. Zhang, Cooperative coevolution of Elman recurrent neural networks for chaotic time series
prediction, Neurocomputing 86 (2012) 116—-123.

D. Li, X. Wang, J. Sun, Y. Feng, Radial basis function neural network model for dissolved oxygen concentration
prediction based on an enhanced clustering algorithm and Adam, IEEE Access 9 (2021) 44521-44533.

M. Zhu, Z. Meng, Macroeconomic Image Analysis and GDP Prediction Based on the Genetic Algorithm Radial
Basis Function Neural Network (RBFNN-GA), Computational Intelligence and Neuroscience 2021 (2021).
H.-G. Han, M.-L. Ma, H.-Y. Yang, J.-F. Qiao, Self-organizing radial basis function neural network using accel-
erated second-order learning algorithm, Neurocomputing 469 (2022) 1-12.

H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless commu-
nication, science 304 (5667) (2004) 78-80.

S. Scardapane, M. Panella, D. Comminiello, A. Hussain, A. Uncini, Distributed reservoir computing with sparse
readouts [research frontier], IEEE Computational Intelligence Magazine 11 (4) (2016) 59-70.

M. Han, W.-J. Ren, M.-L. Xu, An improved echo state network via I1-norm regularization, Acta Automatica
Sinica 40 (11) (2014) 2428-2435.

X. Dutoit, B. Schrauwen, J. Van Campenhout, D. Stroobandt, H. Van Brussel, M. Nuttin, Pruning and regular-
ization in reservoir computing, Neurocomputing 72 (7-9) (2009) 1534—1546.

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, Journal of the royal statistical society:
series B (statistical methodology) 67 (2) (2005) 301-320.

Z. Xu, H. Zhang, Y. Wang, X. Chang, Y. Liang, L 1/2 regularization, Science China Information Sciences 53 (6)
(2010) 1159-1169.

C. L. P. Chen, Z. Liu, Broad Learning System: An Effective and Efficient Incremental Learning System Without
the Need for Deep Architecture, IEEE transactions on neural networks and learning systems 29 (1) (2018) 10—
24.

M. M. Ebadzadeh, A. Salimi-Badr, IC-FNN: a novel fuzzy neural network with interpretable, intuitive, and
correlated-contours fuzzy rules for function approximation, IEEE Transactions on Fuzzy Systems 26 (3) (2018)
1288-1302.

A. Salimi-Badr, M. M. Ebadzadeh, A novel self-organizing fuzzy neural network to learn and mimic habitual
sequential tasks, IEEE transactions on cybernetics (2020).

P. P. Angelov, D. P. Filev, An approach to online identification of Takagi-Sugeno fuzzy models, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34 (1) (2004) 484—498.

H.-J. Rong, N. Sundararajan, G.-B. Huang, P. Saratchandran, Sequential adaptive fuzzy inference system
(SAFIS) for nonlinear system identification and prediction, Fuzzy sets and systems 157 (9) (2006) 1260-1275.
K. Subramanian, S. Suresh, A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system,
Applied soft computing 12 (11) (2012) 3603-3614.

M. Pratama, S. G. Anavatti, P. P. Angelov, E. Lughofer, PANFIS: A novel incremental learning machine, [EEE
Transactions on Neural Networks and Learning Systems 25 (1) (2013) 55-68.

M. Pratama, S. G. Anavatti, E. Lughofer, GENEFIS: Toward an effective localist network, IEEE Transactions
on Fuzzy Systems 22 (3) (2013) 547-562.

M. M. Ebadzadeh, A. Salimi-Badr, CFNN: Correlated fuzzy neural network, Neurocomputing 148 (2015) 430—

34

(50]
[51]
[52]

(53]

[54]
[55]
[56]

[57]

(58]

[59]
(60]

[61]

[62]

[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
(73]

[74]

444,

J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on
Neural Networks, IEEE, 1995, pp. 1942-1948.

A. Nickabadi, M. M. Ebadzadeh, R. Safabakhsh, A novel particle swarm optimization algorithm with adaptive
inertia weight, Applied soft computing 11 (4) (2011) 3658-3670.

A. Barua, L. S. Mudunuri, O. Kosheleva, Why trapezoidal and triangular membership functions work so well:
Towards a theoretical explanation, Journal of Uncertain Systems 8 (2014).

E. Hosseini-Asl, J. M. Zurada, O. Nasraoui, Deep Learning of Part-Based Representation of Data Using Sparse
Autoencoders With Nonnegativity Constraints, IEEE transactions on neural networks and learning systems
27 (12) (2016) 2486-2498.

G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing
70 (1-3) (2006) 489-501.

C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM transactions on intelligent systems
and technology (TIST) 2 (3) (2011) 1-27.

Z. Zojaji, M. M. Ebadzadeh, H. Nasiri, Semantic schema based genetic programming for symbolic regression,
Applied Soft Computing 122 (2022) 108825.

S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, S. X. Chen, Cautionary tales on air-quality improvement in Bei-
jing, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2205) (2017)
20170457.

N. Jin, Y. Zeng, K. Yan, Z. Ji, Multivariate air quality forecasting with nested long short term memory neural
network, IEEE Transactions on Industrial Informatics 17 (12) (2021) 8514-8522.

J.R. A. Moniz, D. Krueger, Nested LSTMSs, arXiv preprint arXiv:1801.10308 (2018).

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber, LSTM: A search space odyssey, IEEE
transactions on neural networks and learning systems 28 (10) (2017) 2222-2232.

H. Zheng, J. Yuan, L. Chen, Short-term load forecasting using EMD-LSTM neural networks with a Xgboost
algorithm for feature importance evaluation, Energies 10 (8) (2017) 1168.

H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Liang, Z. Wei, G. Sun, Hybrid method for short-term photovoltaic
power forecasting based on deep convolutional neural network, IET Generation, Transmission & Distribution
12 (20) (2018) 4557-4567.

K. Yan, W. Li, Z. Ji, M. Qi, Y. Du, A hybrid LSTM neural network for energy consumption forecasting of
individual households, IEEE Access 7 (2019) 157633-157642.

D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee
colony (ABC) algorithm, Journal of global optimization 39 (3) (2007) 459—-471.

K. Socha, M. Dorigo, Ant colony optimization for continuous domains, European journal of operational research
185 (3) (2008) 1155-1173.

D. T. Pham, A. Ghanbarzadeh, E. Kog, S. Otri, S. Rahim, M. Zaidi, The bees algorithm—a novel tool for
complex optimisation problems, in: Intelligent production machines and systems, Elsevier, 2006, pp. 454-459.

D. Simon, Biogeography-based optimization, IEEE transactions on evolutionary computation 12 (6) (2008)
702-713.

N. Hansen, S. D. Miiller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strat-
egy with covariance matrix adaptation (CMA-ES), Evolutionary computation 11 (1) (2003) 1-18.

R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous
spaces, Journal of global optimization 11 (4) (1997) 341-359.

X.-S. Yang, Nature-inspired metaheuristic algorithms, Luniver press, 2010.

J. H. Holland, Genetic algorithms, Scientific american 267 (1) (1992) 66-73.

Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation
76 (2) (2001) 60-68.

E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by
imperialistic competition, in: 2007 IEEE congress on evolutionary computation, Ieee, 2007, pp. 4661-4667.

A. R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Eco-
logical informatics 1 (4) (2006) 355-366.

35

[75] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching—learning-based optimization: a novel method for constrained
mechanical design optimization problems, Computer-aided design 43 (3) (2011) 303-315.

[76] S. Bisgaard, M. Kulahci, Quality quandaries: Studying input-output relationships, part I, Quality Engineering
18 (2) (2006) 273-281.

36

	Introduction
	Related Works
	Background
	Proposed Method
	Experimental Results
	Lorenz System
	Rossler System
	Box-Jenkins Gas Furnace Problem
	Wind Speed Prediction Problem
	Stock Price Prediction Problem
	Air Quality Index Prediction Problem
	Sensitivity Analysis
	Ablation Study
	Comparison of Different Metaheuristic Algorithms
	State Functions

	Discussion
	Conclusion
	Code Availability

