
Neurocomputing 507 (2022) 292–310
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic
Time Series Prediction
https://doi.org/10.1016/j.neucom.2022.08.032
0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: h.nasiri@aut.ac.ir (H. Nasiri), ebadzadeh@aut.ac.ir (M.M.

Ebadzadeh).
Hamid Nasiri, Mohammad Mehdi Ebadzadeh ⇑
Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 January 2022
Revised 28 July 2022
Accepted 3 August 2022
Available online 8 August 2022
Communicated by Zidong Wang

Keywords:
Chaotic time series
Neuro-fuzzy inference system
Prediction
Recurrent fuzzy neural network
Time series forecasting
Chaotic time series prediction, a challenging research topic in dynamic systemmodeling, has drawn great
attention from researchers around the world. In recent years extensive researches have been done on
developing chaotic time series prediction methods, and various models have been proposed. Among
them, recurrent fuzzy neural networks (RFNNs) have shown significant potential in this area. Most of
the proposed RFNNs learn a single function, but when dealing with chaotic time series, different outputs
may be generated for a specific input based on the system’s state. So, a network is required that can learn
multiple functions simultaneously. Based on this concept, a novel multi-functional recurrent fuzzy neural
network (MFRFNN) is proposed in this paper. MFRFNN consists of two fuzzy neural networks with
Takagi-Sugeno-Kang fuzzy rules, one is used to produce the output, and the other to determine the sys-
tem’s state. There is a feedback loop between these two networks, which makes MFRFNN capable of
learning and memorizing historical information of past observations. Employing the states allows the
proposed network to learn multiple functions simultaneously. Moreover, a new learning algorithm,
which employs the particle swarm optimization algorithm, is developed to train the networks’ weights.
The effectiveness of MFRFNN is validated using the Lorenz and Rossler chaotic time series and four real-
world datasets, including Box–Jenkins gas furnace, wind speed prediction, Google stock price prediction,
and air quality index prediction. Based on the root mean square error, the proposed method shows a
decrease of 35:12%;13:95%, and 49:62% from the second best methods in the Lorenz time series, Box–
Jenkins gas furnace, and wind speed prediction dataset, respectively.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

As a mathematical theory, chaos theory has been one of the hot
research topics for decades. The idea behind it is that unpredictable
and random behavior can occur in a system that follows determin-
istic laws, implying that a specific initial condition constantly
evolves in the same way. Poincare was the first to discover a chao-
tic system, thus establishing the groundwork for modern chaos
theory [1]. Since then, many researchers have worked on this the-
ory and developed it rapidly. Following the development of chaos
theory, this theory has been used by researchers in various fields.
The chaotic time series, one of the most popular chaos applications,
connects the real world and chaos theory like a bridge [2,1].

Chaotic time series are series of consecutive observations gath-
ered from a chaotic system. For predicting the system’s behavior,
past data points are used to build a model that represents the
underlying dynamic of that system [3,4] This is a very effective
modeling method when there is not enough knowledge about
the underlying data generation process or when the relationship
between the observed variables and the prediction variable is not
obvious [5]. In recent years extensive researches have been done
on the development of chaotic time series prediction methods,
and various models have been proposed, including Artificial Neural
Networks (ANN) [4,6–8], Fuzzy Neural Networks (FNN) [1], Autore-
gressive models [9], Swarm Intelligence based models [10]. Among
these models, FNNs and ANNs are the best models as they have
great ability in handling nonlinearity [11–13]. It has been proved
theoretically that ANNs and FNNs are universal approximators cap-
able of estimating an arbitrary nonlinear function to any desired
accuracy [14–16].

Although feed forward neural networks can map the static
input–output relationship, they are unsuitable for modeling the
chaotic time series [17]. Despite the poor performance of the feed
forward structure in predicting time series, Recurrent Neural Net-
work (RNN) has shown the significant potential of learning tempo-
ral dependencies within time series data [18,19]. Due to the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.08.032&domain=pdf
https://doi.org/10.1016/j.neucom.2022.08.032
mailto:h.nasiri@aut.ac.ir
mailto:ebadzadeh@aut.ac.ir
https://doi.org/10.1016/j.neucom.2022.08.032
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. Return map of Mackey–Glass chaotic time series.

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
existence of a feedback loop in RNN’s structure, it can learn and
memorize information of the past observations by forming the
structure of information circulation [20]. RNNs are computation-
ally powerful and significantly compact compared to feed-
forward networks for the same approximation accuracy. Moreover,
RNNs have proven to be universal approximators [21]. Although
RNNs have good prediction ability, it is difficult to train them
due to the vanishing or exploding gradient problem. These prob-
lems lead to slow convergence and higher computational require-
ments [22].

Other methods showing promising performance for time series
prediction are FNNs. FNNs are hybrid methods that combine an
ANN’s learning capabilities with a fuzzy system’s interpretability
and semantic transparency. FNNs have a considerable advantage
in terms of local representation and human reasoning and have
proven to be quite effective in dealing with nonstochastic uncer-
tainties [14]. Since FNNs are capable of capturing the underlying
relationship from the data, they have achieved great success in
time series prediction [23]. To combine RNNs potential of learning
temporal dependencies with FNNs capability to deal with fuzzy
information, Recurrent Fuzzy Neural Network (RFNN) has been
proposed in the literature [24–30].

Although the proposed RFNNs can learn temporal dependencies
and memorize historical information, most of them learn a single
function, so they generate a specific output based on the current
and previous inputs in each time step. But when dealing with chao-
tic time series (i.e., strong nonlinear problems), different outputs
may be generated for a specific input based on the system’s state.
To better explain the problem through visualization, we illustrated
the return map of the Mackey–Glass chaotic time series in Fig. 1. As
it can be seen, in x�, there are two possible outputs (i.e., a and b),
and based on the system’s state, the output can be different. In this
problem, the algorithm needs to learn two different functions
simultaneously (i.e., F1 and F2) using two states to let it select
one based on the system’s state. Therefore, if an algorithm learns
a single function, it can not determine the output value in x� and,
as a result, can not achieve high accuracy in time series prediction.
So, a network is required to determine the system’s state and learn
a single function for each state. In other words, the system should
be capable of learning multiple functions simultaneously. Another
issue to be addressed is the fact that chaotic time series are highly
sensitive to initial conditions, leading to long-term unpredictabil-
ity characteristics [5,1,31]. Therefore, a network with long-term
prediction ability requires learning the states of the system to cap-
ture the dynamic behavior of the chaotic time series. It also needs a
structure with a feedback loop to memorize historical information
of past observations.

In light of the requirements outlined above, a novel multi-
functional recurrent fuzzy neural network (MFRFNN) for time ser-
ies prediction has been proposed in this paper. MFRFNN consists of
two FNNs, one to predict the future value of time series and the
other to determine the state of the system. The proposed network
has a feedback loop between two networks to learn and memorize
historical information of past observations. Furthermore, it
employs the states to learn multiple functions simultaneously that
result in capturing the dynamic characteristics of the chaotic time
series and predicting long-term values of the time series. To the
best of the authors’ knowledge, MFRFNN is the first RFNN that
determines the system’s state, learns a single function for each
state, and models multiple functions simultaneously. The major
contributions of this paper are summarized as follows:

1. A novel multi-functional recurrent fuzzy neural network for
time series prediction is proposed, which combines the advan-
tages of an RNN and an FNN. MFRFNN consists of two FNNs that
connect with a feedback loop. This helps MFRFNN to memorize
293
past observations and capture the dynamic characteristics of
chaotic time series. Moreover, it determines the system’s state
and is capable of learning multiple functions simultaneously.

2. Developing a new learning algorithm to learn weights of
MFRFNN. This algorithm employs the least square method
and particle swarm optimization algorithm to learn the weights
of two FNNs.

3. The effectiveness of MFRFNN is evaluated with the Lorenz and
Rossler chaotic time series and four real-world time series.
The experimental results show that MFRFNN effectively fore-
casts time series, and the prediction accuracy is considerably
increased. For the Lorenz time series, Box–Jenkins gas furnace
dataset, and wind speed prediction dataset, based on the root
mean square error, the proposed method showed a decrease
of 35:12%;13:95%, and 49:62% from the second best methods,
respectively.

The rest of the paper is organized as follows: Section 2 reviews
the related works. Section 3 briefly introduces the particle swarm
optimization (PSO) algorithm. The proposed method is then intro-
duced in Section 4, with Section 5 evaluating the performance of
MFRFNN and giving the experimental results. Section 6 presents
a discussion of the results, and finally Section 7 concludes the
paper with a short summary.
2. Related works

In recent years, time series prediction has attracted broad atten-
tion from researchers, it became more and more popular as time
goes by, and various methods have been proposed for it. ANN is
one of these methods. Many researchers have developed novel
radial basis function neural networks (RBFNN) for time series pre-
diction tasks. Li et al. [32] proposed ECA-Adam-RBFNN, which uses
an enhanced clustering algorithm and the Adam algorithm to train
an RBFNN. They used K-means with ant colony optimization to
determine the center of RBFS. Also, the Adam algorithm was used
to adjust the centers and weights of the network. Zhu and Meng
[33] developed RBFNN-GA for gross domestic product prediction
in 2021. RBFNN-GA employs the genetic algorithm to tune the
parameters of the RBFNN. Han et al. [34] proposed a novel self-
organizing RBFNN, which uses an accelerated second-order learn-
ing algorithm to optimize the structure and parameters of RBFNN
simultaneously. Another method is RNN, showing great ability in
dealing with temporal dependencies [18]. Different variants of



H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
RNN have been proposed in the literature, such as long short-term
memory (LSTM), gated recurrent unit (GRU), and echo state net-
work (ESN).

ESN, proposed by Jaeger and Has [35], has a good performance
for chaotic time series prediction. It is composed of an input layer,
a reservoir of sparsely connected and randomly-generated neu-
rons, and an output layer. It has the RNN’s potential of learning
temporal dependencies but does not require training of the inter-
nal weights [5]. However, ESN has a major problem, which is insta-
bility, and suffers from the ill-posed problem in the learning
process, when the number of observations is less than the number
of output neurons weights [5]. To tackle this problem, several
extensions of ESN have been proposed [36,37,11,5,38–40].

In 2018 Chen and Lin [41] proposed the broad learning system
(BLS), which is a randomized neural network with a flat structure
[20,3]. The BLS has received considerable attention from the
researchers due to its outstanding performance in different
machine learning problems, especially time series prediction
[20]. Xu et al. [3] developed a novel recurrent BLS (RBLS). To make
the network capable of learning the dynamic characteristics of the
time series, they add feedback loops in the enhancement nodes
and used the conjugate gradient method to update the parameters
of RBLS.

FNNs are a combination of ANNs and fuzzy logic systems (FLSs),
which benefit from both the learning capability of ANNs and the
semantic transparency and interpretability of FLSs [42,30,43]. Dif-
ferent types of FNNs have been proposed in the literature [44–
48,26,27,30]. Angelov and Filev [44] developed eTS, which is an
evolving Takagi–Sugeno (TS) model that employs recursive cluster-
ing with subtraction to update the network structure. Rong et al.
[45] proposed the sequential adaptive fuzzy inference system
(SAFIS), which implements a zero-order TS model and uses a rule
influence metric to add or remove fuzzy rules. SAFIS updates its
rules using an extended Kalman filter [30,45]. Subramanian and
Suresh [46] introduced a meta-cognitive neuro-fuzzy inference
system (McFIS) in 2012. They proposed a meta-cognitive sequen-
tial learning method for McFIS, which chooses the best training
strategy for each sample based on its instantaneous error and
spherical potential of the rule antecedents. PANFIS [47] is proposed
by Pratama et al. in 2013. It starts the learning process with an
empty fuzzy rule base and grows it by statistical contributions of
the fuzzy rules. PANFIS also employs rule blending for pruning
redundant rules [26,47,30]. Pratama et al. [48] extended PANFIS
idea and proposed GENEFIS. In GENEFIS each feature’s contribution
is measured both in the antecedent and in the consequent of the
rules. GENEFIS has the capability of online feature selection [48].
Ebadzadeh and Salimi-Badr [49] proposed CFNN, an FNN with cor-
related fuzzy rules, which uses the Levenberg–Marquardt (LM)
method to learn fuzzy rules parameters. Their proposed method
can approximate nonlinear functions with highly correlated input
variables with fewer fuzzy rules. ICFNN [42], an FNN with inter-
pretable correlated-contours fuzzy rules, was proposed in another
paper by Ebadzadeh and Salimi-Badr. They introduced a novel sha-
peable membership function (MF) with an adjustable shape to
form contours with different shapes. They also used the LM
method to fine-tune fuzzy rules. However, since these models do
not have recurrent connections, they could not learn temporal
dependencies and memorize past information. As a result, the
RFNNs were proposed.

Juang et al. [24] proposed RSEFNN-LF, a recurrent fuzzy neural
network with local feedback. The RSEFNN-LF obtains its recurrent
structure by locally feeding a fuzzy rule’s firing strength back to
itself. They used the Kalman filter and gradient descent algorithm
for parameter learning. MRIT2NFS [25], a mutually recurrent inter-
val type-2 neuro-fuzzy system, was proposed by Lin et al.
MRIT2NFS uses interval type-2 fuzzy sets for the antecedent part
294
of fuzzy rules. Its recurrent structure comes from a local internal
feedback, which is established by feeding the firing strength of
each rule to all rules, including itself. This RFNN employs type-2
fuzzy clustering for structure learning and the rule-ordered Kal-
man filter algorithm for parameter learning. Samanta et al. [26]
developed a novel spatio-temporal fuzzy inference system (SPAT-
FIS), which uses memory type neurons to incorporate spatial and
temporal information of the time series. SPATFIS has a dual recur-
rent structure (input and defuzzification layers) and employs a
novel learning method to add and remove fuzzy rules. Its stability
is proved in [26]. However, a major drawback of SPATFIS is that
sometimes its memory neurons cannot track rapidly changing sys-
tem dynamics [30]. Samanta et al. [27] proposed NFIS-DN in 2019.
NFIS-DN uses dynamic neurons, which consider only the impact of
finite past observations, allowing the system to have finite mem-
ory. An evolving RFNN (i.e., eRIT2IFNN) was introduced by Luo
et al. [28]. The eRIT2IFNN utilizes interval type-2 fuzzy sets to
improve uncertainty modeling and employs Takagi–Sugeno-Kang
(TSK) fuzzy rules for inference. Moreover, eRTI2IFNN uses a
density-based clustering method for structure learning. Its recur-
rent structure comes from a local internal feedback loop, which
is created by feeding the firing strength of each rule to itself. Ding
et al. [29] developed SORFNN-MTSA, a self-organizing RFNN.
SORFNN-MTSA employs a self-organization mechanism to opti-
mize its structure. It utilizes a recurrent mechanism, based on
wavelet transform and fuzzy Markov chain to increase the conver-
gence speed. In [30], a Bayesian neuro-fuzzy inference system
(BaNFIS) is proposed, which estimates temporal dependencies on
past observations using an online Bayesian probabilistic method.
BaNFIS only keeps past information as long as it is required and
uses them globally or locally. Based on how the model uses past
information, the authors in [30] proposed two models: Global BaN-
FIS and Local BaNFIS. For more details on these models, please refer
to [30]. Table 1 summarizes the advantages and disadvantages of
different time series prediction methods. As mentioned, when
dealing with strong nonlinear problems, RFNN should be capable
of learning multiple functions simultaneously, but most RFNNs
learn a single function, so they can not generate different outputs
for a specific input. This paper attempts to fill this gap by proposing
a novel multi-functional recurrent fuzzy neural network, which
can determine the system’s state and learn multiple functions
simultaneously by employing it.
3. Background

To clarify the proposed network and make the paper more
compact, this section presents a brief introduction of particle
swarm optimization (PSO). The PSO was proposed by Kennedy
and Eberhart [50] in 1995, is a population-based stochastic opti-
mization method inspired by the social behaviors observed in
flocking birds. In PSO, a candidate solution of the optimization
problem is referred to as a particle, and a group of particles
makes a swarm. Each particle has its position and velocity. The
ith particle’s velocity and position at kth iteration are updated
according to Eqs. (1) and (2).

vkþ1
i ¼ wvk

i þ c1r1 pk
i � xk

i

� �þ c2r2 pk
gbest � xk

i

� �
ð1Þ

xkþ1
i ¼ xk

i þ vkþ1
i ð2Þ

where xk
i and v

k
i denote the position and velocity of the ith particle

at the kth iteration, respectively. pk
i and pk

gbest are the personal best
position of the ith particle and the global best position of the
swarm, respectively. w is the inertia weight. c1 and c2 are cognitive
and social acceleration coefficients determining the relative impor-



Table 1
Summary of the advantages and disadvantages of different time series prediction methods.

Authors Year Model Type Advantages Disadvantages

Li et al. [32] 2021 ECA-
Adam-
RBFNN

RBFNN -Ability to learn the nonlinear
relationship between input and
output
-Low training time
-Having a low standard deviation
due to its simplicity
-Performs more robustly than
multilayer perceptron

-Local minima problem
-Determining the optimal
structure and hyperparameters is
difficult
-Unable to model the temporal
dependency of the time series
data
-Low accuracy in long-term
prediction

Zhu and Meng [33] 2021 RBFNN-
GA

Han et al. [34] 2022 ASOL-
SORBFNN

Han et al. [37] 2014 L1ESN ESN -Stability problems
-Vanishing and exploding
gradient problems
-Collinearity problems when
using high-dimensional reservoirs

Scardapane et al. [36] 2016 L1ESN
Xu et al. [11] 2016 AEESN
Xu et al. [5] 2019 HESN

Angelov
and Filev [44]

2004 eTS FNN -Interpretability and semantic
transparency
-Ability to handle nonstochastic
uncertainties
-Having a good local
representation power
-Human-like reasoning capability

-Unable to model the temporal
dependency of the time series
data
-Low accuracy in long-term
prediction

Rong et al. [45] 2006 SAFIS
Subramanian

and Suresh [46]
2012 McFIS

Pratama et al. [47] 2013 PANFIS
Pratama et al. [48] 2013 GENEFIS
Ebadzadeh and

Salimi-Badr [49]
2015 CFNN

Ebadzadeh and
Salimi-Badr [42]

2017 ICFNN

Juang et al. [24] 2010 RSEFNN-
LF

RFNN -Ability to learn temporal
dependencies within time series
-Interpretability and semantic
transparency
-Ability to handle nonstochastic
uncertainties
-Having a good local
representation power

-Stability problems
-Learning a single function for
time series prediction task

Lin et al. [25] 2013 MRIT2NFS
Samanta et al. [26] 2019 SPATFIS
Samanta et al. [27] 2019 NFIS-DN
Luo et al. [28] 2019 eRIT2IFNN
Ding et al. [29] 2021 SORFNN-

MTSA
Subhrajit et al. [30] 2021 BaNFIS

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
tance of pk
i and pk

gbest . r1 and r2 are uniformly distributed random
vectors within the interval ½0;1� [51].
4. Proposed method

In this section, the proposed multi-functional recurrent fuzzy
neural network is presented. MFRFNN consists of two FNNs with
TSK fuzzy rules. One produces the system’s output (called output
network), and the other determines the state of the system (called
state network). These two networks connect with a feedback loop,
which helps MFRFNN in memorizing historical information of past
observations. Furthermore, the state network allows it to learn
multiple functions simultaneously that result in capturing the
dynamic characteristics of chaotic time series. An overview of the
proposed method is shown in Fig. 2.

Let N denote the number of the states, K1 and K2 denote the
number of fuzzy rules of the output network and state network,
295
respectively. Then, the output network performs N function
approximations, each with K1 fuzzy rules, i.e., it learns a function
for each state. The system’s output consists of N segments. In each
segment, a state approximates a function, and the final output is
the sum of these functions. The state network also performs N
function approximations, each with K2 fuzzy rules, to determine
the next state of the system. Fig. 3 demonstrates the structure of
MFRFNN. As shown in Fig. 3, both networks consist of five layers.
The operation function of the neurons in each layer is described
as follows:

1. Input layer: This layer accepts input variables, and its neu-
rons correspond to the membership functions (MFs). It is used to
compute the membership values of input variables. Let
x ¼ x1; x2; � � � ; xd½ �T denote the input and ŷ denote the predicted out-
put. Ai;j and Bi;j are the MFs for xj in the ith rule of output and state
network, respectively, and the membership value of jth input vari-
able xj on Ai;j is denoted by lAi;j

xj
� �

, so the output of each neuron Ai;j

in this layer is the membership value of xj on Ai;j, i.e., lAi;j
xj
� �

. Obvi-



Fig. 2. Overview of MFRFNN.

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
ously, there are K1 � d and K2 � d neurons for the output and state
network in this layer, respectively.

2. Fuzzy rules layer: Neurons at this layer represent the fuzzy
rules, and their output represents the firing strength of a rule. Let
ri and qi denote the output of the ith neuron of this layer for the
output and state network, respectively. They can be computed by
applying the T-norm operator on the previous layer’s outputs.
Using the algebraic product as the T-norm operator, the firing
strength of each rule can be computed by (3) and (4).

riðxÞ ¼
Yd
j¼1

lAi;j
xj
� � ð3Þ

qiðxÞ ¼
Yd
j¼1

lBi;j
xj
� � ð4Þ

3. Normalized fuzzy rules layer: Output of the neurons in this
layer represents the normalized firing strength of each rule (�ri and
�qi for the output and state network, respectively) and can be com-
puted by (5) and (6).
Fig. 3. MFRFNN architecture. The output network produces the system’s output, and th
layer can be crisp or fuzzy MFs. If crisp MFs are used, the network’s states become disc

296
�riðxÞ ¼ riðxÞ
XK1

j¼1

rjðxÞ
ð5Þ

�qiðxÞ ¼ qiðxÞXK2

j¼1

qjðxÞ
ð6Þ

4. Extended fuzzy rules layer: For each network, N linear com-
binations of normalized firing strength of rules are computed in
this layer, and the output of N separate functions is determined.
There are N neurons in this layer for each network. The output of
the neurons in this layer represents the output of approximated
functions (Fi and Gi for the output and state network, respectively)
that can be computed as follows:

Fj ¼
XK1

i¼1

�riwij ð7Þ

Gj ¼
XK2

i¼1

�qiv ij ð8Þ

where wij and v ij represent the link weight corresponding to the ith
rule of the output and state network in the jth state of the system,
respectively, the link weight matrix of the output network (W) can
be expressed by (9).

W ¼

w11 w12 � � � w1N

w21 w22 � � � w2N

..

. ..
. . .

. ..
.

wK11 wK12 � � � wK1N

2
66664

3
77775 ð9Þ

5. Output layer: Output layer of the output network computes
the system’s output (ŷ). In this layer, the output of functions from
the previous layer is multiplied by state signals (from state net-
e state network produces state signals. Membership functions (MFs) in the output
rete, and if fuzzy MFs are used, its states become continuous.



H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
work); as a result, the function corresponding to the current state
is activated, and the other functions are deactivated (multiplied by
zero) and have no effect on the output. The final output of the sys-
tem is the sum of these functions. Let FðtÞ and SðtÞ denote vectors
whose entries are the output of approximated functions and state
signals of the system at the time step t, respectively, as presented
in (10).

FðtÞ ¼ F1; F2; � � � ; FN½ �T
SðtÞ ¼ s1; s2; � � � ; sN½ �T

ð10Þ

The output of the system at the time step t, (ŷ) is computed as
follows:

ŷðtÞ ¼ FðtÞTSðtÞ ð11Þ
Output layer of the state network produces state signals as output.
In this layer, first, the output of neurons from layer 4 is multiplied
by state signals. Then, the results are summed up and given as input
to the membership functions. Then, the output of membership
functions determines the next state of the system and considered
as state signals. Finally, these signals go to a delay unit, and the out-
put of the delay unit goes to layer 5 of both networks as a feedback
loop. The intermediate output of this layer at the time step t is com-
puted as follows:

oðtÞ ¼ GðtÞTSðtÞ ð12Þ
where GðtÞ denotes a vector whose entries are the output of the pre-
vious layer’s neurons, as presented in (13) and can be computed by
(14).

GðtÞ ¼ G1;G2; � � � ;GN½ �T ð13Þ

GðtÞ ¼ VTQ ðtÞ ð14Þ
where V and Q ðtÞ denote the link weight matrix of the state net-
work and vector of normalized firing strength of the fuzzy rules at
the time step t, respectively, expressed in (15).

Q ðtÞ ¼

�q1

�q2

..

.

�qK2

2
66664

3
77775;V ¼

v11 v12 � � � v1N

v21 v22 � � � v2N

..

. ..
. . .

. ..
.

vK21 vK22 � � � vK2N

2
66664

3
77775 ð15Þ

Assuming that all entries of V andW are in the range ½0;1�, then oðtÞ
is normalized in the range ½1;N� and gives as input to the MFs. The
input to the MFs at the time step t; �oðtÞ is computed as follows:

�oðtÞ ¼ ½oðtÞ � ðN � 1Þ� þ 1 ð16Þ
Let Ei denote the ith MF at the output layer, the system’s state at the
time step t þ 1; Sðt þ 1Þ is determined by (17).

Sðt þ 1Þ ¼

lE1
ð�oðtÞÞ

lE2
ð�oðtÞÞ
..
.

lEN
ð�oðtÞÞ

2
666664

3
777775

ð17Þ

where lEi
ð�oðtÞÞ is the membership value of �oðtÞ on Ei. As shown in

Fig. 3, MFs can be crisp or fuzzy MFs. If crisp MFs are used, the net-
work’s states become discrete states, and if fuzzy MFs are used, its
297
states become continuous states. In the case of fuzzy MFs (i.e., con-
tinuous states), the final output is a weighted sum of N approxi-
mated functions.

As above description, the total number of trainable parameters
for MFRFNN is ðK1 þ K2Þ � N. The link weight matrix of the output
network ðWÞ, and state network ðVÞ have K1 � N and K2 � N train-
able parameters, respectively. The training procedure of the output
network weight matrix is described as follows:

Given a training dataset D ¼ x½t�; y½t�
� �p

t¼1, where p denotes the
number of training samples. In addition to (11), the output of the
system can also be computed by (18):

ŷ ¼ tr RðtÞSTðtÞ
� �T

W
� 	

ð18Þ

where trð�Þ denotes the trace of a matrix and RðtÞ is a column vector
whose entries are the normalized firing strength of fuzzy rules as
presented in (19):

RðtÞ ¼ �r1;�r2; � � � ;�rK1


 �T ð19Þ

By plugging p training data into (18), the matrix Eq. (20) is obtained.

Ah ¼ y ð20Þ
A ¼

�r½1�1 s1 �r½1�1 s2 � � � �r½1�2 s1 � � � �r½1�K1
sN

�r½2�1 s1 �r½2�1 s2 � � � �r½2�2 s1 � � � �r½2�K1
sN

..

. ..
. . .

. ..
. . .

. ..
.

�r½p�1 s1 �r½p�1 s2 � � � �r½p�2 s1 � � � �r½p�K1
sN

2
6666664

3
7777775

h ¼ w11 w12 � � � w21 � � � wK1N½ �T

y ¼ y½1� y½2� � � � y½p�

 �T

ð21Þ

where �r½j�i denotes the normalized firing strength of ith rule for the
jth training sample and y½i� denotes the actual output of the ith train-
ing sample. A closed-form solution for (20), which minimizes

kAh� yk2 can be derived by the Moore–Penrose pseudoinverse:

h� ¼ ATA
� ��1

ATy ð22Þ

Obviously, h� is a column vector of length ðK1 � NÞ, whose entries
are the weight matrix ðWÞ entries.

Since the relationship between the link weight matrix of the
state network ðVÞ and the output is not linear, the trainable param-
eters of V cannot be obtained by the linear least-squares method.
Therefore, PSO is used for learning these parameters. In the pro-
posed training algorithm, in addition to position ðxÞ and velocity
ðvÞ, each particle has its own output network’s weight matrix
ðwÞ. Obviously, in this optimization problem, x represents the
weight matrix of the state network that has to be optimized. The
training algorithm of the output network weight matrix is summa-
rized in Algorithm1. The cost value calculation algorithm in the
training phase is also implemented in this algorithm. MFRFNN
training algorithm details are shown in Algorithm2. Finally, the
prediction algorithm in the test phase is summarized in
Algorithm3.



H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
Algorithm1: Training of output network weight matrix
Algorithm2: Training of MFRFNN
298
Algorithm3: Predicting the output in the test phase
5. Experimental results

This section evaluates the performance of MFRFNN on two
chaotic systems (i.e., Lorenz and Rossler) and four real-world data-
sets, including Box–Jenkins Gas Furnace, Wind Speed Prediction,
Google Stock Price Prediction, and Air Quality Index Prediction.
These benchmarks are standard benchmarks and have been widely
used in the time series prediction community. Since the mentioned
datasets did not contain any outliers, Min–max normalization was
used to scale all data into the range ½0;1� in all experiments. To
handle outliers, Z-score normalization (Standardization) can be
used. The experiments were run on an Intel Core i5-8250U,
1.60 GHz CPU with 8 GB RAM, running Windows 10 operating sys-
tem. To assess the performance of MFRFNN and compare its perfor-
mance with other methods, five evaluation metrics were used:
Mean Square Error (MSE), Root Mean Square Error (RMSE), Nor-
malized Root Mean Square Error (NRMSE), Mean Absolute Error
(MAE), and Symmetric Mean Absolute Percentage Error (SMAPE).

The parameters of MFRFNN, including the number of fuzzy rules
for the output network and state network, number of states of the
state network, and maximum number of fitness evaluations for the
PSO algorithm, were chosen by trial and error using the validation
set in each benchmark. For the number of fuzzy rules of the output
and state network, different values from 2 to 5 were tested. For the
number of states, different values from 2 to 15 were evaluated, and
the maximum number of fitness evaluations for the PSO algorithm
was chosen from the set f250;500;1000;2000;4000g. Moreover,
the validation set was used to avoid overfitting and improve the



Table 2
The main parameters of MFRFNN in each benchmark.

Benchmark K1 K2 N Maximum Number of FES
(PSO Algorithm)

Number of
input steps

Lorenz System 27 27 3 500 1
Rossler System 27 27 3 250 1
Box-Jenking Gas Furnace 9 4 2 4000 1
Wind Speed Prediction 4 4 2 4000 1
Stock Price Prediction 3 3 2 4000 1
Air Quality Index Prediction 16 16 2 250 4

Table 3
Details of the experimental setup for the Lorenz
system.

Parameter Value

Number of samples 20000
Initial state ½12;2;9�
Step size 0.01
Number of training samples 11250
Number of validation samples 3750
Number of test samples 5000

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
model’s generalization. In each experiment, first, we chose the
parameters’ values based on the validation error and then set these
parameters and computed the test error. Table 2 summarizes the
selected parameters for each benchmark. To ensure a fair compar-
ison with other methods, we set the number of input steps equal to
the number of input steps of the comparing method. The direct
forecasting strategy was used for all methods in all experiments.
Also, symmetrical and uniformly distributed triangular MFs were
used for the input layer of MFRFNN’s output network and state net-
work. It is worth mentioning that we evaluated different types of
MFs, including triangular, Gaussian, combination of two Gaussians,
and Generalized bell-shaped, and the best results were obtained by
triangular MFs. Moreover, it has been proved theoretically in [52]
that why in practice, this type of MFs work so well. We considered
two cases for the state network’s output layer’s MFs: crisp MFs, i.e.,
MFRFNN with discrete states, and fuzzy MFs, i.e., MFRFNN with
continuous states.
5.1. Lorenz system

The Lorenz system is a non-linear, three-dimensional system
that can be described as follows:

dx=dt ¼ rðy� xÞ
dy=dt ¼ xðq� zÞ � y

dz=dt ¼ xy� bz

ð23Þ

when r ¼ 10;b ¼ 8=3, and q ¼ 28, the system has chaotic solutions.
The experimental setup, same as [3], was used in this paper, and the
fourth-order Runge–Kutta method was used to generate samples.
Table 3 summarizes the details of the experimental setup.

To evaluate the performance of MFRFNN on chaotic systems,
this experiment was conducted using two state-of-the-art meth-
ods, including deep autoencoder (DAE) [53] and RBLS [3], as well
as three other machine learning methods: ELM [54], ESN [35],
and e-SVR [55]. For this experiment, the parameters settings of
other methods and experimental setup were the same as [3].
Table 4 presents the one-step-ahead prediction results of the Lor-
enz time series, including twenty independent runs’ averages and
standard deviations. Furthermore, to evaluate whether the superi-
ority of a method was statistically significant, a two-tailed Welch’s
t-test with a significance level a ¼ 0:05 was applied for RMSE
between MFRFNN with continuous states and other methods.
Welch’s t-test is a nonparametric univariate statistical test, useful
when the two samples have unequal variances [56]. The last col-
umn of Table 4 shows the p-value of the two-tailed Welch’s t-
test. In all comparisons except the comparison of MFRFNN with
continuous states and RBLS on the zðtÞ series, the null hypothesis
is clearly rejected based on the tests with a 95% confidence level
ðp� value < 0:05Þ, giving statistically significant results. Fig. 4
shows one-step-ahead prediction curves, error curves, and his-
tograms of errors for the Lorenz series generated by MFRFNN with
continuous states.
299
5.2. Rossler system

The Rossler system is a classical system, consisted of three non-
linear ordinary differential equations and can be defined by:

dx=dt ¼ �y� z

dy=dt ¼ xþ ay
dz=dt ¼ bþ zðx� cÞ

ð24Þ

when a ¼ 0:15; b ¼ 0:2, and c ¼ 10, the system shows chaotic
behavior. To compare the performance of MFRFNN with other
methods under the same condition, the experimental setup, same
as [5], was used for the Rossler system. In this setup, the fourth-
order Runge–Kutta method was employed for sample generation.
Some of the samples were discarded to eliminate the transient
influence of the initial condition. Table 5 presents the details of
the experimental setup for the Rossler system.

To evaluate the performance of MFRFNN on long-term predic-
tion task, we compared its performance with six extensions of
ESN: ESN based on L1-norm (L1ESN) [37], ESN based on L2-norm
regularization (L2ESN) [38], ESN based on elastic net regularization
(EESN) [39], ESN based on L1=2 regularization (L1=2ESN) [40], adap-
tive elastic ESN (AEESN) [11], and hybrid regularized ESN (HESN)
[5]. The parameters settings of the mentioned algorithms were
the same as [5], and the results were averaged over twenty runs,
again similar to [5]. In chaotic time series, the largest predictable
horizon is relevant to the largest Lyapunov exponent [5]. The chao-
tic time series’ predictable horizon was estimated using the inverse
of the largest Lyapunov exponent as expressed by (25).

gmax ¼
1

lmax
ð25Þ

where lmax denotes the largest Lyapunov exponent and gmax denotes
the predictable horizon [5]. Same as [5], we used the Wolf method
to compute lmax. For the Rossler system, lmax is 1:18, so the pre-
dictable horizon can be computed using (25):
gmax ¼ 1=1:18 � 0:847. Since the step size for the Rossler system
is set to 0:03, the predictable step is 0:847=0:03 � 28. So, for Rossler
system, the predictable horizons were considered from 1 to 28.
Table 6 shows multi-step ahead prediction results of the Rossler
time series.



Table 4
One-step-ahead prediction error comparison on the Lorenz System.

Series Method RMSE SMAPE NRMSE p-value

Lorenz
System
xðtÞ

DAE avg 8.05E�04 3.90E�05 1.02E�04 5.35E�31

std (2.91E�05) (3.84E�06) (3.68E�06)
ESN avg 2.47E�04 1.23E�05 3.13E�05 7.94E�49

std (6.45E�06) (3.92E�07) (8.18E�07)
ELM avg 7.21E�04 3.42E�05 9.14E�05 2.75E�41

std (8.94E�07) (6.27E�08) (1.13E�07)
e-SVR avg 3.58E�03 2.20E�04 4.54E�04 1.49E�53

std (0.00E+00) (0.00E+00) (0.00E+00)
RBLS avg 2.05E�04 9.30E�06 2.60E�05 3.73E�32

std (1.83E�06) (9.10E�08) (2.32E�07)
MFRFNN

(Discrete States)
avg 6.52E�05 2.58E�06 8.42E�06 8.25E�11
std (1.59E�05) (4.46E�07) (2.06E�06)

MFRFNN
(Continuous States)

avg 2.44E�05 7.27E�07 3.15E�06 –
std (6.62E�06) (2.00E�07) (8.56E�07)

Lorenz
System
yðtÞ

DAE avg 2.42E�03 9.02E�05 2.69E�04 3.67E�52

std (4.87E�05) (5.93E�06) (5.43E�06)
ESN avg 5.65E�04 2.61E�05 6.29E�05 3.98E�18

std (1.75E�05) (9.85E�07) (1.95E�06)
ELM avg 2.26E�03 8.10E�05 2.51E�04 9.31E�34

std (1.77E�06) (1.28E�07) (1.97E�07)
e-SVR avg 5.86E�03 3.29E�04 6.52E�04 2.04E�42

std (0.00E+00) (0.00E+00) (0.00E+00)
RBLS avg 4.15E�04 1.71E�05 4.61E�05 3.26E�06

std (6.16E�06) (2.23E�07) (6.86E�07)
MFRFNN

(Discrete States)
avg 1.53E�03 6.62E�05 1.74E�04 2.33E�16
std (2.15E�04) (9.85E�06) (2.44E�05)

MFRFNN
(Continuous States)

avg 3.58E�04 1.40E�05 4.05E�05 –
std (3.95E�05) (2.68E�06) (4.49E�06)

Lorenz
System
zðtÞ

DAE avg 1.98E�03 2.34E�05 2.29E�04 3.13E�42

std (2.79E�05) (1.16E�06) (3.24E�06)
ESN avg 6.16E�04 8.56E�06 7.16E�05 4.43E�14

std (1.90E�05) (2.75E�07) (2.21E�06)
ELM avg 1.78E�03 2.04E�05 2.07E�04 5.07E�29

std (7.39E�07) (3.19E�08) (8.58E�08)
e-SVR avg 4.79E�03 8.23E�05 5.57E�04 1.05E�38

std (0.00E+00) (0.00E+00) (0.00E+00)
RBLS avg 4.52E�04 5.38E�06 5.25E�05 1.65E�01

std (7.69E�06) (7.97E�08) (8.93E�07)
MFRFNN

(Discrete States)
avg 1.29E�03 1.62E�05 1.51E�04 1.28E�17
std (1.53E�04) (1.57E�06) (1.80E�05)

MFRFNN
(Continuous States)

avg 4.36E�04 4.79E�06 5.09E�05 –
std (4.90E�05) (5.65E�07) (5.71E�06)

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
Fig. 5 shows the relationship between prediction errors and pre-
diction horizons for different methods.
1 http://mesonet.agron.iastate.edu/request/awos/1min.php
5.3. Box–Jenkins gas furnace problem

Box–Jenkins gas furnace is a well-known time series forecasting
problem in which the output CO2 concentration is predicted using
the input oxygen flow rate [30]. Same as [30], the forecasting prob-
lem can be represented by (26).

ŷðtÞ ¼ f ðyðt � 1Þ;uðtÞÞ ð26Þ

Where uðtÞ and yðtÞ denote the oxygen flow rate and CO2 concentra-
tion rate, respectively. The dataset consists of 290 samples, 200 of
which were used as the training set, and the remaining 90 samples
were used as the test set. To assess the performance of MFRFNN on
real-world time series, we compared its performance with three
state-of-the-art RFNNs, including NFIS-DN [27], SPATFIS [26], and
BaNFIS (global BaNFIS and local BaNFIS) [30]. Moreover, five other
FNNs were used for comparison: eTS [44], SAFIS [45], McFIS [46],
300
PANFIS [47], and GENEFIS [48]. Table 7 presents the one-step-
ahead prediction results of the Box–Jenkins gas furnace problem.
5.4. Wind speed prediction problem

The wind speed prediction problem is a non-linear, dynamic,
and volatile problem in which the future value of wind speed is
predicted using the current wind speed and wind direction. The
dataset is obtained from the Iowa Department of Transport’s web-
site.1 The data was collected from the Washington station during a
one-month period (February 2011), sampled every ten minutes,
and averaged hourly. There are 500 samples in the training set and
1000 samples in the test set [30]. This dataset is more challenging
than the Box–Jenkins dataset due to the existence of noise. This
experiment compared the proposed method’s performance with
the same algorithms we used in the Box–Jenkins dataset. The results
are given in Table 8.



Fig. 4. One-step-ahead prediction curve, error curve, and histogram of errors for the Lorenz time series generated by MFRFNN.

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310

301



Table 5
Details of the experimental setup for the Rossler system.

Parameter Value

Number of samples 12700
Initial state ½1;1;1�
Step size 0:03
Number of discarded samples 7700
Number of training samples 3000
Number of validation samples 1000
Number of test samples 1000

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
5.5. Stock price prediction problem

Stock price prediction is a non-linear and highly volatile prob-
lem. In this problem, the future value of Google stock price is pre-
dicted using the current price as defined by (27).

ŷðtÞ ¼ f ðyðt � 1ÞÞ ð27Þ
The dataset was obtained from Yahoo Finance2 during a six-year
period from 19-August-2004 to 21-September-2010 as in [30]. The
training set consisted of 1529 samples, and the test set 900 samples.
To evaluate the performance of MFRFNN on another real-world time
series, we compared its performance with the same RFNNs and FNNs
used in Box–Jenkins and wind speed prediction datasets. Table 9
shows the one-step-ahead prediction results of the Google stock
price prediction problem.

5.6. Air quality index prediction problem

In this experiment, we employed the air quality index (AQI)
dataset [57] to evaluate the performance of MFRFNN in a real-
world multi-step ahead prediction task. The AQI dataset was
obtained from 12 observing stations around Beijing from 2013 to
2017, containing extremely frequent and drastic fluctuations. The
dataset consisted of 35,064 samples, which were collected hourly
for 1461 days. Each sample comprised six major pollution compo-
nents, including fine particulate matter (PM2.5), respirable particu-
late matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2),
carbon monoxide (CO), and ozone (O3) [58,57]. Same as [58], the
first 22800 samples (950 days) were used as the training set,
1200 samples (50 days) as the validation set, and 1200 samples
as the test set. Also, four input steps were used as the input
sequence.

In order to sustain the effectiveness of the proposed method in
time series prediction, we compared its performance with five tra-
ditional machine learning models, including decision tree (DT),
random forest (RF), support vector regression (SVR), multilayer
perceptron (MLP), and long short-term memory (LSTM). We also
considered some extensions of LSTM, including the nested LSTM
(NLSTM) [59] and the stacked LSTM (SLSTM) [60], for comparison.
Moreover, MFRFNN was compared with hybrid models incorporat-
ing various LSTM extensions and pre-processing methods, such as
empirical mode decomposition (EMD) [61], variational mode
decomposition (VMD) [62], and wavelet transform (WT) [63]. Fur-
thermore, MTMC-NLSTM [58] was used as a state-of-the-art model
for comparison. The experimental setup and parameters used for
the mentioned methods were the same as [58]. Twenty indepen-
dent runs were performed for each method, and the averages
and standard deviations were reported in Tables 10–13. Table 10
and 11 present the five-step-ahead prediction results of the AQI
dataset. Ten-step-ahead prediction results of the AQI dataset were
reported in Table 12 and Table 13. Moreover, to evaluate whether
2 http://finance.yahoo.com

302
the performance of a method was statistically significant, a two-
tailed Welch’s t-test with a 0:05 significance level was applied.
The Welch’s t-test was applied for RMSE between MFRFNN and
other methods, and the obtained p-value was reported. As can be
seen, all the results were statistically significant. Table 14 com-
pares the number of parameters and average training time of dif-
ferent methods.

5.7. Sensitivity analysis

We performed a sensitivity analysis in this section to further
strengthen this study. The parameters used in sensitivity analysis
are as follows: Number of states and number of MFs in each
dimension. The number of MFs was considered equal for both net-
works (i.e., output network and state network), and from 2 to 5 in
each dimension. The number of states ranged from 1 to 15, so 60
independent experiments were performed, and the NRMSE was
computed for MFRFNN with continuous states. The Lorenz time
series and Box–Jenkins gas furnace problem were used as the
benchmark in the aforementioned experiments. Fig. 6 shows the
relationship between NRMSE, the number of MFs, and the number
of states for the one-step-ahead prediction of the Lorenz time ser-
ies. As can be seen, when MFRFNN employed one state, the NRMSE
was high, because in this case, MFRFNN had no feedback loop, so it
can not memorize historical information of the time series. In
Fig. 6, when the number of states increased from 2 to 9, MFRFNN
did not have high sensitivity to parameters, but when the number
of states exceeded 9, NRMSE tended to increase with the increase
of states. Moreover, when the number of states was large (i.e.,
ten and more), the performance strongly depended on the number
of MFs and the number of fuzzy rules. Table 15 presents the
NRMSE of the various number of states and MFs for the one-
step-ahead prediction of the Box–Jenkins gas furnace problem. As
can be seen, when the number of states and MFs was low, MFRFNN
did not have high sensitivity to parameters. As the number of
states and MFs increased, the number of parameters of the model
increased, and the model’s generalization started to deteriorate. As
a result, the NRMSE on the test set increased.

5.8. Ablation study

In this section, we present an ablation study to demonstrate the
impact of feedback loop between two networks (i.e., output net-
work and state network) in the structure of MFRFNN with contin-
uous states. We repeated the experiments on Lorenz and Rossler by
MFRFNN without a feedback loop to conduct this study. In other
words, we used the proposed structure with the same number of
fuzzy rules but with just one state. We also evaluated MFRFNN
without a feedback loop on real-world datasets. For the AQI data-
set, the models were evaluated by a ten-step-ahead prediction
task. To assess whether the results were statistically significant, a
two-tailed Welch’s t � test with a 0:05 significance level was
applied for RMSE, and the obtained p-value was reported. Table 16
compares MFRFNN’s performance with and without a feedback
loop on the Lorenz and Rossler time series. Note that in the exper-
iments with a feedback loop, the experimental setups were the
same as in Table 2. As can be seen in Table 16, MFRFNN with feed-
back loop obtained lower RMSE and SMAPE in all experiments.
Also, based on the statistical tests, the p-value was lower than
the specified significance level (i.e., 0:05), giving statistically signif-
icant results. Table 17 presents the comparison of MFRFNN’s per-
formance with and without a feedback loop on real-world
datasets. As shown in Table 17, MFRFNN with a feedback loop
obtained lower RMSE and MAE in all experiments except AQI-
PM10 and AQI-SO2. For AQI-PM10, the result was not considered
statistically significant based on the statistical test. For AQI-SO2,



Table 6
Multi-step-ahead prediction RMSE comparison on the Rossler System-xðtÞ series.

horizon L1ESN L2ESN EESN L1=2ESN AEESN HESN MFRFNN
(Discrete States)

MFRFNN
(Continuous States)

avg std avg std

1 7.20E�03 7.60E�03 6.60E�03 7.90E�03 6.90E�03 5.40E�03 3.98E�04 6.97E�04 2.65E�04 3.63E�04
2 1.34E�02 1.35E�02 1.44E�02 1.56E�02 1.28E�02 1.05E�02 5.05E�04 5.03E�04 5.77E�04 7.09E�04
3 1.95E�02 2.05E�02 2.02E�02 2.88E�02 2.01E�02 1.59E�02 1.43E�03 1.03E�03 8.80E�04 5.49E�04
4 2.69E�02 2.92E�02 2.63E�02 4.79E�02 2.89E�02 2.23E�02 3.14E�03 2.06E�03 1.52E�03 6.60E�04
5 3.66E�02 4.01E�02 3.54E�02 7.09E�02 4.03E�02 3.05E�02 3.36E�03 8.84E�04 3.04E�03 1.32E�03
6 5.03E�02 5.47E�02 4.71E�02 9.91E�02 5.47E�02 4.14E�02 6.48E�03 4.57E�03 4.40E�03 1.43E�03
7 6.78E�02 7.36E�02 6.25E�02 1.31E�01 7.29E�02 5.57E�02 7.24E�03 1.81E�03 6.94E�03 2.10E�03
8 9.06E�02 9.77E�02 8.19E�02 1.67E�01 9.49E�02 7.38E�02 1.02E�02 2.58E�03 9.50E�03 3.20E�03
9 1.17E�01 1.27E�01 1.06E�01 2.07E�01 1.21E�01 9.61E�02 1.23E�02 1.75E�03 1.25E�02 3.06E�03
10 1.50E�01 1.62E�01 1.34E�01 2.49E�01 1.52E�01 1.23E�01 2.25E�02 1.33E�02 1.79E�02 7.99E�03
11 1.85E�01 2.03E�01 1.66E�01 2.94E�01 1.86E�01 1.53E�01 2.62E�02 1.01E�02 1.91E�02 4.73E�03
12 2.26E�01 2.48E�01 2.02E�01 3.41E�01 2.24E�01 1.87E�01 3.24E�02 9.49E�03 2.78E�02 1.09E�02
13 2.70E�01 2.99E�01 2.42E�01 3.90E�01 2.66E�01 2.25E�01 4.71E�02 2.59E�02 3.31E�02 6.81E�03
14 3.19E�01 3.54E�01 2.85E�01 4.41E�01 3.11E�01 2.66E�01 5.09E�02 3.27E�02 3.56E�02 5.42E�03
15 3.69E�01 4.13E�01 3.31E�01 4.92E�01 3.59E�01 3.10E�01 7.78E�02 6.15E�02 4.78E�02 1.37E�02
16 4.24E�01 4.75E�01 3.80E�01 5.45E�01 4.08E�01 3.56E�01 8.19E�02 4.19E�02 5.24E�02 9.36E�03
17 4.81E�01 5.40E�01 4.31E�01 5.98E�01 4.60E�01 4.03E�01 9.17E�02 5.37E�02 6.93E�02 1.38E�02
18 5.40E�01 6.06E�01 4.84E�01 6.51E�01 5.12E�01 4.52E�01 1.15E�01 7.04E�02 8.14E�02 1.02E�02
19 6.01E�01 6.73E�01 5.38E�01 7.04E�01 5.65E�01 5.01E�01 1.54E�01 1.46E�01 8.50E�02 1.13E�02
20 6.64E�01 7.40E�01 5.92E�01 7.56E�01 6.17E�01 5.51E�01 1.74E�01 1.03E�01 1.01E�01 1.73E�02
21 7.27E�01 8.07E�01 6.47E�01 8.08E�01 6.69E�01 5.99E�01 1.90E�01 1.30E�01 1.20E�01 2.91E�02
22 7.93E�01 8.72E�01 7.02E�01 8.59E�01 7.19E�01 6.47E�01 2.05E�01 1.47E�01 1.48E�01 4.23E�02
23 8.58E�01 9.35E�01 7.56E�01 9.10E�01 7.68E�01 6.93E�01 2.35E�01 1.55E�01 1.87E�01 8.19E�02
24 9.25E�01 9.95E�01 8.10E�01 9.60E�01 8.14E�01 7.37E�01 3.64E�01 2.62E�01 2.49E�01 1.16E�01
25 9.91E�01 1.05E+00 8.62E�01 1.01E+00 8.58E�01 7.79E�01 3.82E�01 2.51E�01 3.20E�01 1.82E�01
26 1.06E+00 1.10E+00 9.12E�01 1.06E+00 8.99E�01 8.19E�01 5.17E�01 2.97E�01 3.43E�01 1.56E�01
27 1.12E+00 1.15E+00 9.61E�01 1.10E+00 9.37E�01 8.55E�01 5.32E�01 2.84E�01 3.75E�01 2.63E�01
28 1.19E+00 1.20E+00 1.01E+00 1.15E+00 9.72E�01 8.89E�01 5.59E�01 2.68E�01 4.43E�01 2.16E�01

Fig. 5. Relationship between prediction errors and prediction horizons for different
methods (Rossler System).

Table 7
One-step-ahead prediction error comparison on the Box–Jenkins gas furnace problem.

Method RMSE MSE MAE

eTS 0.049 0.002 0.034
SAFIS 0.071 0.005 0.047
McFIS 0.045 0.002 0.028
PANFIS 0.070 0.005 0.048
GENEFIS 0.050 0.003 0.034
NFIS-DN 0.046 0.002 0.033
SPATFIS 0.050 0.003 0.036

Global BaNFIS 0.043 0.002 0.029
Local BaNFIS 0.063 0.004 0.049
MFRFNN

(Discrete States)
avg 0.039 0.002 0.028
std (4.53E�04) (3.52E�05) (6.09E�04)

MFRFNN
(Continuous States)

avg 0.037 0.001 0.026
std 1.48E�03 (1.10E�04) (1.04E�03)

Table 8
One-step-ahead prediction error comparison on the wind speed prediction problem.

Method RMSE MSE MAE

eTS 0.380 0.144 0.262
SAFIS 0.376 0.141 0.257
McFIS 0.230 0.052 0.165
PANFIS 0.190 0.036 0.131
GENEFIS 0.153 0.023 0.105
NFIS-DN 0.150 0.022 0.106
SPATFIS 0.146 0.021 0.101

Global BaNFIS 0.136 0.018 0.099
Local BaNFIS 0.133 0.017 0.097
MFRFNN

(Discrete States)
avg 0.070 0.005 0.048
std (1.57E�03) (2.19E�04) (1.03E�02)

MFRFNN
(Continuous States)

avg 0.067 0.005 0.048
std (8.96E�04) (1.21E�04) (1.17E�03)

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
MFRFNN without a feedback loop obtained lower MAE. This may
be because of the simplicity of the prediction task in this experi-
ment. As a result, MFRFNN with one state (i.e., without a feedback
loop) obtained better generalization and lower MAE. Note that
MFRFNN with a feedback loop used only two states in this exper-
iment. Based on the results, it is obvious that using the feedback
loop and multiple states in the proposed method was substantially
beneficial.
303



Table 9
One-step-ahead prediction error comparison on the Google stock price prediction
problem.

Method RMSE MSE MAE

eTS 0.070 0.005 0.047
SAFIS 0.071 0.005 0.051
McFIS 0.036 0.001 0.026
PANFIS 0.049 0.002 0.034
GENEFIS 0.036 0.001 0.025
NFIS-DN 0.030 0.001 0.019
SPATFIS 0.020 0.0004 0.015

Global BaNFIS 0.016 0.0003 0.011
Local BaNFIS 0.044 0.002 0.037
MFRFNN

(Discrete States)
avg 0.017 0.0003 0.012
std (4.03E�04) (1.39E�05) (3.32E�04)

MFRFNN
(Continuous States)

avg 0.017 0.0003 0.012
std (4.02E�04) (1.39E�05) (2.11E�04)

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
5.9. Comparison of different metaheuristic algorithms

As mentioned, the link weight matrix of the state network can
not be obtained by the linear least-squares method. So, MFRFNN
uses PSO to learn parameters of V. However, any other metaheuris-
tic algorithm can be used instead of PSO. In this section, we
employed different metaheuristic algorithms to train MFRFNN.
These algorithms include Artificial Bee Colony (ABC) [64], Ant Col-
ony Optimization for Continuous Domains (ACOR) [65], Bees Algo-
rithm (BA) [66], Biogeography-based Optimization (BBO) [67],
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [68],
Differential Evolution (DE) [69], Firefly Algorithm (FA) [70], Genetic
Table 10
Five-step-ahead prediction error comparison on the AQI dataset (PM2.5, PM10, and SO2)

Method PM2.5

RMSE MAE p-value RMSE

DT 1.17E+00 6.58E�01 4.58E�63 1.13E+00
(1.30E�02) (4.01E�03) (1.41E�02)

RF 9.69E�01 5.35E�01 1.25E�45 9.00E�01
(4.10E�03) (1.76E�03) (5.05E�03)

SVR 9.85E�01 5.13E�01 8.21E�38 8.89E�01
(0.00E+00) (0.00E+00) (0.00E+00)

MLP 9.35E�01 5.03E�01 2.50E�37 8.87E�01
(0.00E+00) (0.00E+00) (0.00E+00)

LSTM 9.45E�01 5.13E�01 7.90E�62 8.99E�01
(9.22E�03) (1.37E�02) (9.13E�03)

EMD-LSTM 7.02E�01 4.02E�01 7.82E�50 8.84E�01
(1.50E�02) (1.06E�02) (1.99E�02)

WT-LSTM 8.32E�01 4.35E�01 6.24E�58 8.09E�01
(8.25E�03) (1.34E�02) (2.71E�02)

VMD-LSTM 3.69E�01 2.04E�01 1.33E�37 3.34E�01
(5.89E�03) (9.57E�03) (1.80E�02)

NLSTM 9.38E�01 4.99E�01 9.60E�55 8.84E�01
(6.55E�03) (1.16E�02) (8.51E�03)

EMD-NLSTM 7.59E�01 4.23E�01 2.43E�27 8.74E�01
(3.97E�02) (2.07E�02) (1.69E�02)

WT-NLSTM 8.35E�01 4.43E�01 3.67E�50 7.94E�01
(1.63E�02) (1.71E�02) (1.17E�02)

VMD-NLSTM 3.77E�01 2.06E�01 6.57E�35 3.23E�01
(1.69E�02) (1.12E�02) (5.65E�03)

SLSTM 9.56E�01 5.25E�01 6.03E�62 8.92E�01
(1.14E�02) (2.66E�02) (1.20E�02)

EMD-SLSTM 7.20E�01 3.90E�01 7.82E�28 8.58E�01
(3.69E�02) (1.90E�02) (1.03E�02)

WT-SLSTM 8.46E�01 4.61E�01 2.23E�48 8.21E�01
(1.73E�02) (2.02E�02) (1.85E�02)

VMD-SLSTM 3.47E�01 1.91E�01 4.78E�40 3.17E�01
(7.58E�03) (7.94E�03) (1.92E�02)

MTMC-NLSTM 6.43E�01 3.48E�01 7.73E�24 5.95E�01
(4.50E�02) (2.80E�02) (2.82E�02)

MFRFNN 1.08E�01 4.90E�02 – 8.60E�02
(1.10E�02) (1.53E�03) (2.73E�04)

304
Algorithm (GA) [71], Harmony Search (HA) [72], Imperialist Com-
petitive Algorithm (ICA) [73], Invasive Weed Optimization (IWO)
[74], and Teaching–Learning-based Optimization (TLBO) [75]. As
mentioned, all entries of V are in the range ½0;1�, so for all decision
variables optimized by metaheuristic algorithms, the lower bound
is 0, and the upper bound is 1. Table 18 shows the ten-step-ahead
prediction results of AQI-SO2 and the training time of each method.
5.10. State functions

In this section, the functions learned by each state are illus-
trated to analyze the role of states in MFRFNN. The experiment
was conducted on the wind speed prediction dataset using the
parameters of Table 2. MFRFNN with continuous states was used
for this experiment. Fig. 7 shows the functions learned by each
state, the one-step-ahead prediction curve, and the target curve.
As can be seen, each state learned a different function, and the tar-
get output is a weighted sum of these functions.
6. Discussion

In this paper, we evaluated the performance of MFRFNN on six
different benchmarks. The results of Lorenz time series experi-
ments indicated that MFRFNN with continuous states outper-
formed other methods in all three series. After this method,
MFRFNN with discrete states outperformed other methods in the
xðtÞ series. The prediction accuracy of RBLS closely followed
MFRFNN with continuous states in the yðtÞ and zðtÞ series.
PM10 SO2

MAE p-value RMSE MAE p-value

6.86E�01 3.18E�37 1.02E+00 6.34E�01 1.30E�74
(4.48E�03) (5.59E�03) (3.40E�03)
5.47E�01 7.84E�44 7.65E�01 4.70E�01 1.02E�50
(2.71E�03) (1.53E�03) (1.72E�03)
5.04E�01 1.39E�67 7.31E�01 4.31E�01 9.69E�43
(0.00E+00) (0.00E+00) (0.00E+00)
5.23E�01 1.46E�67 7.27E�01 4.32E�01 1.09E�42
(0.00E+00) (0.00E+00) (0.00E+00)
5.34E�01 8.83E�39 7.38E�01 4.39E�01 3.20E�42
(8.53E�03) (1.22E�02) (8.01E�03)
5.33E�01 3.75E�32 7.12E�01 4.28E�01 1.01E�44
(1.71E�02) (1.09E�02) (6.66E�03)
4.81E�01 8.68E�29 6.48E�01 3.70E�01 2.45E�49
(2.25E�02) (9.02E�03) (8.24E�03)
2.04E�01 2.37E�23 3.17E�01 1.77E�01 4.48E�53
(1.04E�02) (3.09E�03) (2.74E�03)
5.34E�01 3.24E�39 7.41E�01 4.47E�01 8.93E�39
(1.07E�02) (1.43E�02) (1.14E�02)
5.15E�01 2.12E�33 7.13E�01 4.28E�01 7.45E�40
(1.68E�02) (1.33E�02) (8.79E�03)
4.59E�01 1.44E�35 6.45E�01 3.69E�01 1.65E�56
(1.11E�02) (7.40E�03) (6.82E�03)
1.96E�01 1.24E�32 3.13E�01 1.76E�01 3.22E�56
(6.06E�03) (3.78E�03) (3.74E�03)
5.29E�01 1.99E�36 7.33E�01 4.37E�01 1.15E�40
(1.41E�02) (1.30E�02) (8.38E�03)
5.03E�01 2.41E�37 7.20E�01 4.27E�01 4.09E�44
(1.33E�02) (1.12E�02) (1.10E�02)
4.80E�01 4.46E�32 6.53E�01 3.78E�01 1.04E�38
(1.10E�02) (1.34E�02) (1.05E�02)
1.96E�01 3.07E�22 3.04E�01 1.74E�01 3.08E�44
(1.31E�02) (7.43E�03) (6.90E�03)
3.40E�01 1.44E�25 5.20E�01 3.11E�01 3.77E�27
(2.52E�02) (2.45E�02) (1.75E�02)
5.17E�02 – 6.17E�02 3.26E�02 –
(2.41E�04) (4.62E�03) (4.36E�04)



Table 11
Five-step-ahead prediction error comparison on the AQI dataset (NO2, CO, and O3).

Method NO2 CO O3

RMSE MAE p-value RMSE MAE p-value RMSE MAE p-value

DT 1.13E+00 8.34E�01 7.82E�46 1.58E+00 9.80E�01 2.22E�48 7.93E�01 5.39E�01 3.44E�40
(5.21E�03) (2.83E�03) (1.81E�02) (9.37E�03) (9.61E�03) (4.67E�03)

RF 8.51E�01 6.60E�01 3.21E�50 1.27E+00 7.99E�01 1.33E�72 5.19E�01 3.94E�01 4.60E�53
(2.71E�03) (2.58E�03) (7.19E�03) (3.14E�03) (4.38E�03) (3.15E�03)

SVR 7.87E�01 5.85E�01 2.69E�62 1.40E+00 8.09E�01 1.72E�43 3.85E�01 2.82E�01 9.04E�44
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

MLP 7.97E�01 6.14E�01 2.04E�62 1.19E+00 7.44E�01 5.62E�42 4.31E�01 3.52E�01 7.75E�45
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

LSTM 8.09E�01 6.26E�01 5.54E�33 1.23E+00 7.64E�01 8.46E�35 4.47E�01 3.62E�01 2.22E�23
(1.60E�02) (2.00E�02) (2.94E�02) (1.50E�02) (2.91E�02) (2.54E�02)

EMD-LSTM 6.62E�01 5.02E�01 2.44E�28 1.18E+00 7.33E�01 2.89E�35 3.45E�01 2.59E�01 2.67E�21
(2.22E�02) (2.66E�02) (2.78E�02) (1.53E�02) (2.78E�02) (3.05E�02)

WT-LSTM 6.92E�01 5.31E�01 3.79E�30 1.09E+00 6.68E�01 5.45E�31 3.45E�01 2.77E�01 1.29E�21
(1.88E�02) (1.78E�02) (3.50E�02) (1.95E�02) (2.68E�02) (2.71E�02)

VMD-LSTM 2.82E�01 2.09E�01 2.10E�15 5.16E�01 3.02E�01 3.97E�22 1.41E�01 1.14E�01 1.70E�08
(3.47E�02) (2.68E�02) (3.61E�02) (1.41E�02) (4.30E�02) (4.23E�02)

NLSTM 8.06E�01 6.21E�01 4.01E�34 1.23E+00 7.65E�01 2.25E�29 4.40E�01 3.57E�01 3.11E�29
(1.39E�02) (2.05E�02) (4.42E�02) (2.10E�02) (1.51E�02) (1.74E�02)

EMD-NLSTM 6.60E�01 4.97E�01 3.85E�30 1.17E+00 7.21E�01 2.64E�40 3.08E�01 2.14E�01 1.55E�35
(1.78E�02) (2.10E�02) (2.14E�02) (1.04E�02) (6.90E�03) (3.82E�03)

WT-NLSTM 6.87E�01 5.22E�01 1.23E�34 1.09E+00 6.72E�01 4.45E�23 3.53E�01 2.87E�01 4.90E�30
(1.09E�02) (1.57E�02) (7.37E�02) (4.02E�02) (1.14E�02) (1.35E�02)

VMD-NLSTM 2.62E�01 1.97E�01 1.38E�20 5.62E�01 3.17E�01 3.81E�24 1.41E�01 1.14E�01 6.57E�08
(1.63E�02) (1.31E�02) (3.33E�02) (1.69E�02) (4.69E�02) (4.61E�02)

SLSTM 8.24E�01 6.44E�01 6.46E�28 1.25E+00 7.80E�01 2.83E�27 4.25E�01 3.38E�01 1.90E�35
(3.01E�02) (3.71E�02) (5.46E�02) (3.92E�02) (8.67E�03) (1.37E�02)

EMD-SLSTM 6.28E�01 4.63E�01 1.58E�27 1.20E+00 7.50E�01 7.37E�31 3.43E�01 2.45E�01 4.32E�12
(2.30E�02) (2.86E�02) (3.82E�02) (2.08E�02) (8.57E�02) (8.07E�02)

WT-SLSTM 6.99E�01 5.41E�01 1.62E�33 1.08E+00 6.60E�01 4.22E�27 3.53E�01 2.87E�01 1.48E�24
(1.27E�02) (1.88E�02) (4.83E�02) (3.02E�02) (1.97E�02) (2.28E�02)

VMD-SLSTM 2.52E�01 1.93E�01 6.15E�17 4.98E�01 2.95E�01 1.27E�23 1.10E�01 8.43E�02 1.30E�21
(2.39E�02) (2.19E�02) (3.07E�02) (1.44E�02) (6.73E�03) (6.99E�03)

MTMC-NLSTM 5.88E�01 4.29E�01 8.55E�25 8.41E�01 4.89E�01 9.98E�24 3.51E�01 2.56E�01 2.62E�23
(2.96E�02) (2.33E�02) (5.23E�02) (2.55E�02) (2.25E�02) (1.85E�02)

MFRFNN 1.02E�01 7.82E�02 – 1.48E�01 9.17E�02 – 5.18E�02 3.81E�02 –
(4.42E�04) (4.67E�04) (7.89E�03) (3.40E�03) (2.03E�03) (1.77E�03)

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
Although MFRFNN with continuous states outperformed the RBLS
in all evaluation metrics, its standard deviation was higher than
RBLS. A higher standard deviation means a higher variance of the
predictions, which is the drawback of MFRFNN. The results
obtained by RBLS in the yðtÞ and zðtÞ series were closely followed
by ESN. The good performance of RBLS is due to the recurrently
connected nodes in its enhancement units, allowing it to capture
the dynamic behavior of the Lorenz time series. As can be seen
from Table 4, the e� SVR method had the worst performance on
all metrics, and its standard deviation was zero because there
was no randomness in this algorithm. Fig. 4 shows that the maxi-
mum errors for the xðtÞ; yðtÞ, and zðtÞ series do not exceed
2� 10�4;4:5� 10�3, and 7� 10�3, respectively, which proves that
the results obtained by MFRFNN with continuous states were
acceptable. Note that the prediction intervals for the mentioned
series were ½�20;20�; ½�30;30�, and ½0;50�, respectively. Moreover,
from histograms of errors, it can be seen that the absolute errors
followed a normal distribution, meaning that MFRFNN effectively
captured the dynamic characteristics of the Lorenz system due to
its capability of learning multiple functions simultaneously.

In Rossler time series experiments, the results showed better
performance of MFRFNN with continuous states for the same pre-
diction horizon compared to other methods. After MFRFNN with
continuous states, MFRFNN with discrete states had the lowest
RMSE, closely followed by HESN. We also noted that L1ESN and
L2ESN had the worst accuracy in most cases. As can be seen from
Fig. 5, MFRFNNwith continuous states had the lowest RMSE in var-
ious prediction horizons. When the prediction horizon increased
from 1 to 23, the RMSE difference between MFRFNN with continu-
305
ous states and HESN increased from 0:005 to 0:506. For the predic-
tion horizon of 24 to 28, the RMSE difference was 0:470 on average.
The long-term prediction ability of the proposed method can be
explained by its structure. As mentioned, having a structure with
a feedback loop makes the model capable of memorizing historical
information. Furthermore, using multiple states helps the pro-
posed method store past observations and track system dynamics
in larger prediction horizons.

The results of the Box–Jenkins gas furnace problem experiments
showed that MFRFNN with continuous states outperformed other
methods in this dataset, closely followed by MFRFNN with discrete
states and global BaNFIS. Based on RMSE, MFRFNN with continu-
ous states showed a decrease of 19:57%;26:00%;13:95%, and
41:27% from the NFIS-DN, SPATFIS, global BaNFIS, and local BaN-
FIS, respectively. Based on MSE, MFRFNN with continuous states
showed a decrease of 50:00%;66:67%;50:00%, and 75:00% from
the NFIS-DN, SPATFIS, global BaNFIS, and local BaNFIS, respec-
tively. Based on MAE, MFRFNN with continuous states showed a
decrease of 21:21%;27:78%;10:34%, and 46:94% from the NFIS-
DN, SPATFIS, global BaNFIS, and local BaNFIS, respectively. McFIS
had the highest accuracy among FNNs. Roughly speaking, RFNNs
obtained better results compared to FNNs. Since FNNs do not have
recurrent connections, they could not learn temporal dependencies
in this prediction task. Box–Jenkins time series exhibit serial auto-
correlation, and by plotting the partial autocorrelation function, it
can be seen that the first four lags are statistically significant [76].
So, the future value depends on four past observations. Therefore,
the good performance of MFRFNN in this dataset can be explained
by its structure. Having a structure with a feedback loop makes the



Table 12
Ten-step-ahead prediction error comparison on the AQI dataset (PM2.5, PM10, and SO2).

Method PM2.5 PM10 SO2

RMSE MAE p-value RMSE MAE p-value RMSE MAE p-value

DT 1.43E+00 8.76E�01 4.99E�52 1.39E+00 8.96E�01 9.65E�48 1.17E+00 7.32E�01 1.64E�43
(7.22E�03) (4.65E�03) (4.99E�03) (5.08E�03) (9.29E�03) (5.43E�03)

RF 1.21E+00 7.28E�01 1.80E�90 1.14E+00 7.23E�01 1.25E�45 8.88E�01 5.68E�01 6.16E�91
(2.57E�03) (8.08E�04) (5.17E�03) (3.18E�03) (1.90E�03) (1.11E�03)

SVR 1.20E+00 6.80E�01 1.84E�52 1.12E+00 6.68E�01 4.96E�69 8.10E�01 5.02E�01 1.36E�51
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

MLP 1.17E+00 6.93E�01 3.14E�52 1.11E+00 6.97E�01 5.99E�69 8.41E�01 5.18E�01 6.27E�52
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

LSTM 1.17E+00 7.02E�01 4.23E�47 1.11E+00 6.99E�01 1.28E�30 8.24E�01 5.25E�01 6.87E�39
(8.20E�03) (1.54E�02) (3.01E�02) (1.87E�02) (1.03E�02) (6.03E�03)

EMD-LSTM 1.17E+00 7.02E�01 2.49E�38 1.06E+00 6.89E�01 1.57E�44 8.20E�01 5.17E�01 5.30E�42
(1.48E�02) (1.81E�02) (5.43E�03) (1.40E�02) (8.13E�03) (5.06E�03)

WT-LSTM 1.14E+00 6.73E�01 1.67E�33 1.07E+00 6.84E�01 1.12E�36 8.01E�01 5.10E�01 6.32E�47
(2.31E�02) (1.34E�02) (1.39E�02) (1.13E�02) (6.04E�03) (5.15E�03)

VMD-LSTM 6.05E�01 3.59E�01 4.90E�36 5.73E�01 3.47E�01 2.35E�25 4.55E�01 2.76E�01 9.19E�32
(1.04E�02) (2.27E�02) (2.65E�02) (7.02E�03) (1.16E�02) (8.08E�03)

NLSTM 1.17E+00 6.98E�01 2.56E�48 1.10E+00 7.15E�01 1.31E�35 8.23E�01 5.21E�01 1.76E�35
(7.73E�03) (1.52E�02) (1.63E�02) (1.75E�02) (1.40E�02) (1.37E�02)

EMD-NLSTM 1.14E+00 6.74E�01 2.36E�35 1.08E+00 6.85E�01 4.49E�41 8.18E�01 5.21E�01 1.78E�38
(1.91E�02) (1.66E�02) (8.30E�03) (1.17E�02) (1.06E�02) (6.64E�03)

WT-NLSTM 1.14E+00 6.77E�01 9.89E�36 1.07E+00 6.77E�01 1.33E�46 8.10E�01 5.07E�01 5.51E�46
(1.84E�02) (1.73E�02) (4.34E�03) (1.23E�02) (6.37E�03) (2.03E�03)

VMD-NLSTM 6.06E�01 3.52E�01 4.99E�25 5.73E�01 3.61E�01 1.44E�30 4.50E�01 2.71E�01 1.83E�42
(2.99E�02) (2.13E�02) (1.41E�02) (2.25E�02) (5.52E�03) (4.21E�03)

SLSTM 1.17E+00 7.01E�01 6.36E�41 1.09E+00 6.95E�01 2.92E�41 8.20E�01 5.24E�01 6.73E�36
(1.20E�02) (2.17E�02) (8.20E�03) (1.54E�02) (1.34E�02) (8.49E�03)

EMD-SLSTM 1.13E+00 6.71E�01 7.43E�37 1.08E+00 6.91E�01 2.91E�39 8.21E�01 5.22E�01 2.74E�38
(1.64E�02) (2.19E�02) (1.03E�02) (1.61E�02) (1.08E�02) (7.47E�03)

WT-SLSTM 1.14E+00 6.70E�01 9.59E�37 1.07E+00 6.73E�01 6.84E�42 7.99E�01 5.06E�01 7.08E�42
(1.67E�02) (1.12E�02) (7.46E�03) (7.44E�03) (8.06E�03) (6.02E�03)

VMD-SLSTM 5.65E�01 3.23E�01 2.01E�30 5.57E�01 3.41E�01 4.62E�22 4.44E�01 2.65E�01 1.84E�33
(1.56E�02) (6.24E�03) (3.82E�02) (1.90E�02) (9.76E�03) (7.57E�03)

MTMC-NLSTM 8.71E�01 4.90E�01 4.78E�23 8.34E�01 4.82E�01 7.70E�25 5.15E�01 3.38E�01 1.70E�26
(5.74E�02) (3.45E�02) (4.40E�02) (2.72E�02) (2.29E�02) (3.27E�02)

MFRFNN 1.13E�01 6.44E�02 – 1.07E�01 6.77E�02 – 6.45E�02 3.91E�02 –
(2.31E�03) (3.88E�04) (2.89E�04) (2.65E�04) (1.76E�03) (3.84E�04)

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
model capable of memorizing past observations and using them to
predict the future value. Note that as serial autocorrelation is pre-
sent in this dataset, it requires more past observation in its input
space than in its latent space. As a result, global BaNFIS outper-
formed local BaNFIS in this experiment.

In the wind speed prediction dataset, MFRFNN with continuous
states obtained the smallest RMSE, MSE, and MAE. Based on RMSE,
MFRFNN with continuous states showed a decrease of
55:33%;54:11%;50:74%, and 49:62% from the NFIS-DN, SPATFIS,
global BaNFIS, and local BaNFIS, respectively. Based on MSE,
MFRFNN with continuous states showed a decrease of
77:27%;76:19%;72:22%, and 70:59% from the NFIS-DN, SPATFIS,
global BaNFIS, and local BaNFIS, respectively. Based on MAE,
MFRFNN with continuous states showed a decrease of
54:72%;52:48%;51:52%, and 50:52% from the NFIS-DN, SPATFIS,
global BaNFIS, and local BaNFIS, respectively. GENEFIS was the
most accurate method among FNNs, and RFNNs outperformed
FNNs in all evaluation metrics. It is worth noting that local BaNFIS
outperformed global BaNFIS in this dataset. As aforementioned, the
wind speed dataset is more challenging than the Box–Jenkins data-
set, so a method based on an autoregressive model is not capable of
capturing the dynamic characteristics of this time series. Moreover,
we noted that although the eTS results on the Box–Jenkins dataset
were satisfying, it had the worst performance on all metrics for the
wind speed prediction dataset.

The results of Google stock price prediction indicated that glo-
bal BaNFIS outperformed other methods, closely followed by
MFRFNN with continuous and discrete states. Based on RMSE, glo-
bal BaNFIS showed a decrease of 46:67%;20:00%, and 5:88% from
306
the NFIS-DN, SPATFIS, and MFRFNN, respectively. The good perfor-
mance of global BaNFIS in this dataset was due to its capability to
handle dynamics and use only required past observations in its
prediction. Same as wind speed prediction, GENEFIS outperformed
other FNNs in this experiment.

In five-step-ahead and ten-step-ahead prediction experiments
on the AQI dataset, MFRFNN achieved the best results in all compo-
nents, closely followed by VMD-SLSTM. When the prediction hori-
zon increased from 5 to 10, the RMSE difference between MFRFNN
and the second best method in each component increased too. The
increase in this difference varied from component to component,
rising from 0.239 to 0.425 for PM2.5, from 0.231 to 0.450 for
PM10, from 0.242 to 0.380 for SO2, from 0.150 to 0.482 for NO2,
from 0.350 to 0.646 for CO, and from 0.058 to 0.184 for O3. The
good performance of MFRFNN in this dataset can be attributed to
the superiority of its structure and the feedback loop between
the output network and state network. Using two states in these
experiments makes MFRFNN capable of learning and tracking var-
ious behaviors of the AQI time series with two separate functions
(i.e., a single function for each state). Moreover, comparing the
same methods with and without decomposition showed a positive
impact of decomposition techniques on prediction results. Decom-
position methods such as EMD and VMD decompose time series
into several intrinsic mode functions with a simpler structure
and reduce the complexity of time series. As a result, it could be
predicted more easily than a high fluctuating time series. Methods
using VMD (i.e., VMD-NLSTM and VMD-LSTM) exhibited superior
performance over EMD-based methods. EMD’s inherent problems
can explain the worse performance of EMD-based methods. EMD



Table 13
Ten-step-ahead prediction error comparison on the AQI dataset (NO2, CO, and O3).

Method NO2 CO O3

RMSE MAE p-value RMSE MAE p-value RMSE MAE p-value

DT 1.37E+00 1.06E+00 2.22E�51 1.70E+00 1.10E+00 1.05E�61 1.07E+00 7.35E�01 9.09E�61
(4.51E�03) (4.79E�03) (8.86E�03) (1.05E�02) (8.27E�03) (6.43E�03)

RF 1.06E+00 8.48E�01 5.77E�61 1.49E+00 9.78E�01 8.30E�78 6.55E�01 5.27E�01 1.39E�69
(2.56E�03) (1.96E�03) (5.86E�03) (4.71E�03) (4.96E�03) (3.35E�03)

SVR 1.02E+00 7.91E�01 1.80E�58 1.61E+00 9.82E�01 5.20E�49 4.19E�01 3.39E�01 4.79E�37
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

MLP 1.00E+00 8.06E�01 2.76E�58 1.54E+00 9.69E�01 1.35E�48 5.30E�01 4.54E�01 2.66E�39
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

LSTM 1.02E+00 8.26E�01 2.80E�35 1.58E+00 9.87E�01 4.69E�35 5.66E�01 4.84E�01 1.15E�24
(1.56E�02) (1.76E�02) (2.88E�02) (1.81E�02) (3.36E�02) (2.74E�02)

EMD-LSTM 9.88E�01 7.99E�01 1.15E�40 1.53E+00 9.65E�01 8.55E�36 5.08E�01 4.15E�01 1.29E�24
(8.40E�03) (1.07E�02) (2.63E�02) (1.43E�02) (3.04E�02) (3.13E�02)

WT-LSTM 9.82E�01 7.91E�01 1.52E�33 1.51E+00 9.48E�01 3.89E�26 5.84E�01 5.00E�01 3.42E�29
(1.83E�02) (1.56E�02) (7.00E�02) (3.29E�02) (2.29E�02) (1.83E�02)

VMD-LSTM 6.78E�01 5.27E�01 6.79E�23 8.31E�01 4.99E�01 7.48E�21 2.58E�01 2.02E�01 3.55E�22
(4.24E�02) (4.50E�02) (6.49E�02) (2.95E�02) (1.95E�02) (2.33E�02)

NLSTM 1.01E+00 8.11E�01 6.95E�36 1.54E+00 9.73E�01 1.95E�31 5.59E�01 4.80E�01 6.58E�26
(1.44E�02) (2.18E�02) (3.98E�02) (2.17E�02) (2.94E�02) (2.24E�02)

EMD-NLSTM 9.95E�01 8.02E�01 6.53E�33 1.55E+00 9.71E�01 7.56E�32 4.95E�01 3.85E�01 4.11E�37
(2.00E�02) (2.02E�02) (3.84E�02) (1.63E�02) (1.27E�02) (1.61E�02)

WT-NLSTM 9.81E�01 7.91E�01 1.51E�41 1.47E+00 9.33E�01 2.94E�38 5.56E�01 4.76E�01 4.14E�27
(7.65E�03) (7.33E�03) (2.11E�02) (1.22E�02) (2.62E�02) (2.29E�02)

VMD-NLSTM 6.75E�01 5.33E�01 6.48E�22 8.53E�01 5.14E�01 2.58E�21 2.75E�01 2.13E�01 6.24E�20
(4.75E�02) (5.39E�02) (6.35E�02) (2.99E�02) (2.55E�02) (2.45E�02)

SLSTM 1.02E+00 8.20E�01 1.55E�34 1.53E+00 9.68E�01 3.38E�29 5.43E�01 4.66E�01 7.16E�34
(1.70E�02) (1.80E�02) (5.02E�02) (2.39E�02) (1.58E�02) (1.29E�02)

EMD-SLSTM 9.71E�01 7.68E�01 1.13E�33 1.51E+00 9.51E�01 2.78E�28 5.45E�01 4.26E�01 1.27E�25
(1.78E�02) (1.79E�02) (5.48E�02) (2.81E�02) (2.95E�02) (2.45E�02)

WT-SLSTM 9.79E�01 7.86E�01 2.74E�36 1.47E+00 9.34E�01 5.98E�32 5.05E�01 4.29E�01 1.26E�26
(1.33E�02) (1.63E�02) (3.61E�02) (1.95E�02) (2.51E�02) (2.18E�02)

VMD-SLSTM 6.08E�01 4.78E�01 4.71E�24 8.28E�01 4.98E�01 1.45E�24 2.50E�01 1.87E�01 1.33E�38
(3.22E�02) (3.59E�02) (4.24E�02) (2.61E�02) (8.14E�03) (9.44E�03)

MTMC-NLSTM 8.01E�01 6.33E�01 6.29E�25 1.18E+00 6.86E�01 2.87E�23 5.22E�01 4.27E�01 2.00E�22
(4.05E�02) (3.23E�02) (7.42E�02) (4.06E�02) (3.91E�02) (3.29E�02)

MFRFNN 1.26E�01 1.01E�01 – 1.82E�01 1.17E�01 – 6.59E�02 4.85E�02 –
(9.17E�04) (6.89E�04) (4.61E�03) (2.17E�03) (4.86E�03) (2.88E�03)

Table 14
Comparison of the number of parameters and average training time.

Method Number of Parameters Average Training Time (s)

LSTM 42,197 163.7
EMD-LSTM 42,197 453.4
WT-LSTM 42,197 677.53
VMD-LSTM 50,977 650.47
NLSTM 50,977 166.86
EMD-NLSTM 50,977 451.81
WT-NLSTM 50,977 672.71
VMD-NLSTM 50,977 682.59
SLSTM 182,081 378.42
EMD-SLSTM 182,081 1101.78
WT-SLSTM 182,081 1777.79
VMD-SLSTM 182,081 1891.42
MTMC-NLSTM 345,030 211.91
MFRFNN 64 236.74

Fig. 6. Relationship between NRMSE, the number of MFs, and the number of states
of the one-step-ahead prediction of the Lorenz time series.

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
has drawbacks such as endpoint effect, mode-mixing, sensitivity to
noise, and the need to choose a specific function for interpolation.
Regarding the number of parameters in this experiment, MFRFNN
had the lowest number of parameters. The proposed network used
two states and 16 rules for each network, so it had 64 parameters
(2� 2� 16). Note that MFRFNN had the lowest number of param-
eters but not the lowest average training time. MFRFNN required
calculating fuzzy membership values in each iteration of the train-
ing algorithm, which increased its computational cost. The LSTM
had the lowest average training time. The average training time
increased with the increase of the number of parameters. MTMC-
NLSTM had the highest number of parameters but not the highest
307
average training time because it simultaneously created the pre-
diction model for different AQI components. From Table 14, it is
evident that pre-processing methods increase the training time
drastically, and VMD-SLSTM had the highest average training time.

Finally, the results of comparing different metaheuristic algo-
rithms indicated that based on RMSE, the PSO algorithm outper-
formed other methods in the training of MFRFNN. Moreover, BA,
IWO, and PSO obtained the smallest MAE. The standard deviation



Table 15
NRMSE for one-step-ahead prediction of the Box–Jenkins gas furnace problem.

#States/#MFs 2 3 4 5

1 5.10E�02 5.23E�02 5.10E�02 5.25E�02
2 3.34E�02 3.58E�02 3.58E�02 4.05E�02
3 3.04E�02 3.44E�02 3.87E�02 4.30E�02
4 3.51E�02 3.51E�02 4.41E�02 5.05E�02
5 3.64E�02 4.38E�02 4.75E�02 6.24E�02
6 3.88E�02 4.49E�02 5.25E�02 8.61E�02
7 4.54E�02 5.10E�02 6.73E�02 9.16E�02
8 4.30E�02 5.00E�02 8.18E�02 1.42E�01
9 4.66E�02 5.33E�02 9.08E�02 2.24E�01
10 4.59E�02 5.25E�02 1.34E�01 2.61E�01
11 4.61E�02 5.91E�02 1.61E�01 2.83E�01
12 4.77E�02 5.14E�02 1.90E�01 5.18E�01
13 4.81E�02 7.23E�02 2.86E�01 4.01E�01
14 4.24E�02 8.23E�02 3.41E�01 6.38E�01
15 5.13E�02 8.54E�02 3.65E�01 4.07E�01

Table 18
Ten-step-ahead prediction error comparison of different metaheuristic algorithms on
AQI dataset (SO2).

Method RMSE MAE Training Time (s) p-value

ABC 7.86E�02 3.93E�02 235.47 1.43E�04
(1.16E�02) (4.96E�04)

ACOR 7.41E�02 4.00E�02 238.41 6.48E�04
(1.05E�02) (7.98E�04)

BA 8.04E�02 3.91E�02 228.81 1.39E�02
(2.62E�02) (9.07E�04)

BBO 8.06E�02 3.94E�02 236.16 9.93E�04
(1.85E�02) (8.04E�04)

CMA-ES 7.68E�02 3.92E�02 219.66 3.96E�04
(1.28E�02) (5.59E�04)

DE 7.27E�02 3.95E�02 238.02 1.29E�02
(1.33E�02) (9.08E�04)

FA 7.84E�02 3.98E�02 246.07 5.87E�03
(2.00E�02) (9.36E�04)

GA 8.30E�02 3.95E�02 237.14 2.39E�03
(2.36E�02) (8.31E�04)

HS 7.36E�02 3.94E�02 237.93 1.06E�03
(1.05E�02) (5.33E�04)

ICA 7.80E�02 3.92E�02 241.08 3.55E�04
(1.39E�02) (7.79E�04)

IWO 7.86E�02 3.91E�02 235.99 4.74E�02
(2.97E�02) (1.11E�03)

TLBO 7.90E�02 3.96E�02 239.18 1.45E�03
(1.74E�02) (7.76E�04)

MFRFNN
(PSO)

6.45E�02 3.91E�02 236.11 –
(1.76E�03) (3.84E�04)

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
of PSO was lower than other metaheuristic algorithms. A lower
standard deviation means a lower variance of predictions and a
more robust training algorithm. The good performance of the
PSO algorithm, and the key reason this method was used for train-
ing of MFRFNN, comes with its ability to handle optimization prob-
lems with multiple local optima reasonably well and its global
search capability. CMA-ES and FA obtained the lowest and highest
training time, respectively.
7. Conclusion

This paper proposed a novel multi-functional recurrent fuzzy
neural network for chaotic time series prediction. MFRFNN con-
sisted of two FNNs with TSK fuzzy rules, one was used to produce
the system’s output, and the other to determine the system’s state.
The feedback loop between these two networks made MFRFNN
capable of learning and memorizing historical information of past
observations. Employing the states allowed the proposed network
to learn multiple functions simultaneously, resulting in capturing
the dynamic behavior of the chaotic time series and predicting
Table 16
Comparison of MFRFNN’s performance with and without a feedback loop (Lorenz and Ros

Benchmark With Feedback Loop
RMSE SMAPE

Lorenz System xðtÞ 2.44E�05 7.27E�07
Lorenz System yðtÞ 3.58E�04 1.40E�05
Lorenz System zðtÞ 4.36E�04 4.79E�06
Rossler System xðtÞ 6.22E�07 1.15E�08
Rossler System yðtÞ 1.49E�09 2.92E�11
Rossler System zðtÞ 1.47E�04 2.47E�05

Table 17
Comparison of MFRFNN’s performance with and without a feedback loop (Real-world dat

Benchmark With Feedback Loop
RMSE MAE

AQI-PM2.5 1.13E�01 6.44E�02
AQI-PM10 1.07E�01 6.77E�02
AQI-SO2 6.45E�02 3.91E�02
AQI-NO2 1.26E�01 1.01E�01
AQI-CO 1.82E�01 1.17E�01
AQI-O3 6.59E�02 4.85E�02
Google Stock 1.73E�02 1.20E�02
Box–Jenkins 3.68E�02 2.60E�02
Wind Speed 6.72E�02 4.77E�02

308
long-term values of the time series. Moreover, a new learning algo-
rithm, which employed the PSO algorithm, was developed to train
the weights of MFRFNN. The experimental results indicated that,
for the Lorenz time series, based on the RMSE, MFRFNN showed
a 35:12% decrease from the second best method (i.e., RBLS) on
average. In the Rossler time series, when the prediction horizon
increased from 1 to 23, the RMSE difference between MFRFNN
and the second best method (i.e., HESN) increased from 0.005 to
0.506. For the Box–Jenkins gas furnace dataset and wind speed pre-
diction dataset, based on the RMSE, the proposed network showed
sler).

Without Feedback Loop p-value
RMSE SMAPE

1.53E�04 8.01E�06 3.60E�26
4.87E�03 2.38E�04 8.86E�41
2.22E�03 2.90E�05 2.40E�31
2.78E�06 7.30E�08 2.56E�16
6.99E�09 1.84E�10 1.55E�17
8.29E�04 1.57E�04 8.55E�22

asets).

Without Feedback Loop p-value
RMSE MAE

1.18E�01 6.69E�02 8.86E�09
1.07E�01 6.92E�02 1.00E+00
6.80E�02 3.79E�02 3.36E�08
1.31E�01 1.06E�01 8.44E�16
1.98E�01 1.23E�01 3.01E�12
7.34E�02 6.29E�02 1.40E�06
1.22E�01 7.37E�02 1.40E�47
5.23E�02 4.07E�02 4.27E�21
7.03E�02 5.29E�02 3.18E�12



Fig. 7. Functions learned by each state, one-step-ahead prediction curve, and target curve for the wind speed prediction dataset.

H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
a decrease of 13:95% and 49:62% from the second best method,
respectively. In the Google stock price prediction task, MFRFNN
was the second best method after the global BaNFIS. In the AQI
dataset it showed promising results and outperformed other meth-
ods in five-step-ahead and ten-step-ahead prediction tasks. Over-
all, the experimental results showed that MFRFNN outperformed
other state-of-the-art methods for both chaotic benchmarks and
real-world datasets and showed a good performance in the long-
term prediction of the Rossler system and AQI dataset. In future
work, we would like to incorporate time series decomposition
methods into MFRFNN.

Code availability

The source code of MFRFNN required to reproduce the predic-
tions and results is available at the public Github repository3.

CRediT authorship contribution statement

Hamid Nasiri: Methodology, Software, Validation, Writing -
original draft. Mohammad Mehdi Ebadzadeh: Conceptualization,
Investigation, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] M. Han, K. Zhong, T. Qiu, B. Han, Interval type-2 fuzzy neural networks for
chaotic time series prediction: A concise overview, IEEE Trans. Cybern. 49 (7)
(2019) 2720–2731.

[2] C. Li, Z. Li, L. Guan, P. Qi, J. Si, B. Hao, Measuring the Complexity of Chaotic Time
Series by Fuzzy Entropy, in, in: Proceedings of the International Conference on
Future Networks and Distributed Systems, 2017, pp. 1–7.

[3] M. Xu, M. Han, C.L.P. Chen, T. Qiu, Recurrent Broad Learning Systems for Time
Series Prediction, IEEE Trans. Cybern. 50 (4) (2020) 1405–1417, https://doi.org/
10.1109/TCYB.2018.2863020.

[4] C.-H. Lee, F.-Y. Chang, C.-M. Lin, An efficient interval type-2 fuzzy CMAC for
chaos time-series prediction and synchronization, IEEE Trans. Cybern. 44 (3)
(2014) 329–341.

[5] M. Xu, M. Han, T. Qiu, H. Lin, Hybrid Regularized Echo State Network for
Multivariate Chaotic Time Series Prediction, IEEE Trans. Cybern. 49 (6) (2019)
2305–2315.
3 https://github.com/Hamid-Nasiri/Recurrent-Fuzzy-Neural-Network.
309
[6] R. Castro, Y.M. Souto, E. Ogasawara, F. Porto, E. Bezerra, STconvS2S:
Spatiotemporal convolutional sequence to sequence network for weather
forecasting, Neurocomputing 426 (2021) 285–298.

[7] M.O. Alassafi, M. Jarrah, R. Alotaibi, Time series predicting of COVID-19 based
on deep learning, Neurocomputing 468 (2022) 335–344.

[8] R. d. A. Araújo, N. Nedjah, A.L.I. Oliveira, R. d. L. Silvio, A deep increasing–
decreasing-linear neural network for financial time series prediction,
Neurocomputing 347 (2019) 59–81.

[9] M. Gan, C.L. Philip Chen, L. Chen, C.-Y. Zhang, Exploiting the interpretability
and forecasting ability of the RBF-AR model for nonlinear time series, Int. J.
Syst. Sci. 47 (8) (2016) 1868–1876.

[10] E. Hadavandi, A. Ghanbari, S. Abbasian-Naghneh, Developing a time series
model based on particle swarm optimization for gold price forecasting, in:
2010 Third International Conference on Business Intelligence and Financial
Engineering IEEE, 2010, pp. 337–340.

[11] M. Xu, M. Han, Adaptive elastic echo state network for multivariate time series
prediction, IEEE Trans. Cybern. 46 (10) (2016) 2173–2183.

[12] H.-G. Han, Z.-L. Lin, J.-F. Qiao, Modeling of nonlinear systems using the self-
organizing fuzzy neural network with adaptive gradient algorithm,
Neurocomputing 266 (2017) 566–578.

[13] O. Khayat, M.M. Ebadzadeh, H.R. Shahdoosti, R. Rajaei, I. Khajehnasiri, A novel
hybrid algorithm for creating self-organizing fuzzy neural networks,
Neurocomputing 73 (1–3) (2009) 517–524.

[14] G. Khodabandelou, M.M. Ebadzadeh, Fuzzy neural network with support
vector-based learning for classification and regression, Soft. Comput. 23 (23)
(2019) 12153–12168.

[15] A. Salimi-Badr, M.M. Ebadzadeh, A novel learning algorithm based on
computing the rules’ desired outputs of a TSK fuzzy neural network with
non-separable fuzzy rules, Neurocomputing 470 (2022) 139–153.

[16] T. Xie, F. Cao, The errors in simultaneous approximation by feed-forward
neural networks, Neurocomputing 73 (4–6) (2010) 903–907.

[17] J. Qiao, F. Li, H. Han, W. Li, Growing Echo-State Network With Multiple
Subreservoirs, IEEE Trans. Neural Networks Learn. Syst. 28 (2) (2017) 391–404.

[18] Q. Ma, S. Li, L. Shen, J. Wang, J. Wei, Z. Yu, G.W. Cottrell, End-to-end incomplete
time-series modeling from linear memory of latent variables, IEEE Trans.
Cybern. 50 (12) (2019) 4908–4920.

[19] Z. Li, G. Tanaka, Multi-reservoir echo state networks with sequence resampling
for nonlinear time-series prediction, Neurocomputing 467 (2022) 115–129.

[20] X. Gong, T. Zhang, C.L.P. Chen, Z. Liu, Research Review for Broad Learning
System: Algorithms, Theory, and Applications, IEEE Trans. Cybern.

[21] H. Wang, G. Song, Innovative NARX recurrent neural network model for ultra-
thin shape memory alloy wire, Neurocomputing 134 (2014) 289–295.

[22] M. Ragab, Z. Chen, M. Wu, C.-K. Kwoh, R. Yan, X. Li, Attention-based sequence
to sequence model for machine remaining useful life prediction,
Neurocomputing 466 (2021) 58–68.

[23] H.-G. Han, Z.-Y. Chen, H.-X. Liu, J.-F. Qiao, A self-organizing interval Type-2
fuzzy-neural-network for modeling nonlinear systems, Neurocomputing 290
(2018) 196–207.

[24] C.-F. Juang, Y.-Y. Lin, C.-C. Tu, A recurrent self-evolving fuzzy neural network
with local feedbacks and its application to dynamic system processing, Fuzzy
Sets Syst. 161 (19) (2010) 2552–2568.

[25] Y.-Y. Lin, J.-Y. Chang, N.R. Pal, C.-T. Lin, A mutually recurrent interval type-2
neural fuzzy system (MRIT2NFS) with self-evolving structure and parameters,
IEEE Trans. Fuzzy Syst. 21 (3) (2013) 492–509.

[26] S. Samanta, M. Pratama, S. Sundaram, A novel spatio-temporal fuzzy inference
system (spatfis) and its stability analysis, Inf. Sci. 505 (2019) 84–99.

[27] S. Samanta, S. Suresh, J. Senthilnath, N. Sundararajan, A new neuro-fuzzy
inference systemwith dynamic neurons (nfis-dn) for system identification and
time series forecasting, Appl. Soft Comput. 82 (2019) 105567.

http://refhub.elsevier.com/S0925-2312(22)01007-4/h0005
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0005
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0005
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0010
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0010
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0010
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0010
https://doi.org/10.1109/TCYB.2018.2863020
https://doi.org/10.1109/TCYB.2018.2863020
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0020
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0020
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0020
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0025
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0025
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0025
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0030
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0030
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0030
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0035
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0035
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0045
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0045
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0045
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0055
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0055
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0060
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0060
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0060
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0065
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0065
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0065
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0070
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0070
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0070
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0075
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0075
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0075
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0080
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0080
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0085
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0085
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0090
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0090
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0090
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0095
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0095
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0105
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0105
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0110
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0110
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0110
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0120
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0120
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0120
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0125
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0125
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0125
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0130
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0130
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0135
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0135
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0135


H. Nasiri and M.M. Ebadzadeh Neurocomputing 507 (2022) 292–310
[28] C. Luo, C. Tan, X. Wang, Y. Zheng, An evolving recurrent interval type-2
intuitionistic fuzzy neural network for online learning and time series
prediction, Appl. Soft Comput. 78 (2019) 150–163.

[29] H. Ding, W. Li, J. Qiao, A self-organizing recurrent fuzzy neural network based
on multivariate time series analysis, Neural Comput. Appl. 33 (10) (2021)
5089–5109.

[30] S. Subhrajit, P. Mahardhika, S. Sundaram, Bayesian Neuro-Fuzzy Inference
System (BaNFIS) for Temporal Dependency Estimation, IEEE Trans. Fuzzy Syst.
29 (9) (2021) 2479–2490.

[31] R. Chandra, M. Zhang, Cooperative coevolution of Elman recurrent neural
networks for chaotic time series prediction, Neurocomputing 86 (2012) 116–
123.

[32] D. Li, X. Wang, J. Sun, Y. Feng, Radial basis function neural network model for
dissolved oxygen concentration prediction based on an enhanced clustering
algorithm and Adam, IEEE Access 9 (2021) 44521–44533.

[33] M. Zhu, Z. Meng, Macroeconomic Image Analysis and GDP Prediction Based on
the Genetic Algorithm Radial Basis Function Neural Network (RBFNN-GA),
Comput. Intell. Neurosci. (2021).

[34] H.-G. Han, M.-L. Ma, H.-Y. Yang, J.-F. Qiao, Self-organizing radial basis function
neural network using accelerated second-order learning algorithm,
Neurocomputing 469 (2022) 1–12.

[35] H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication, Science 304 (5667) (2004) 78–80.

[36] S. Scardapane, M. Panella, D. Comminiello, A. Hussain, A. Uncini, Distributed
reservoir computing with sparse readouts [research frontier], IEEE Computat.
Intell. Mag. 11 (4) (2016) 59–70.

[37] M. Han, W.-J. Ren, M.-L. Xu, An improved echo state network via l1-norm
regularization, Acta Automatica Sinica 40 (11) (2014) 2428–2435.

[38] X. Dutoit, B. Schrauwen, J. Van Campenhout, D. Stroobandt, H. Van Brussel, M.
Nuttin, Pruning and regularization in reservoir computing, Neurocomputing
72 (7–9) (2009) 1534–1546.

[39] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc.: Ser. B (Stat. Methodol.) 67 (2) (2005) 301–320.

[40] Z. Xu, H. Zhang, Y. Wang, X. Chang, Y. Liang, L 1/2 regularization, Sci. China Inf.
Sci. 53 (6) (2010) 1159–1169.

[41] C.L.P. Chen, Z. Liu, Broad Learning System: An Effective and Efficient
Incremental Learning System Without the Need for Deep Architecture, IEEE
Trans. Neural Networks Learn. Syst. 29 (1) (2018) 10–24.

[42] M.M. Ebadzadeh, A. Salimi-Badr, IC-FNN: a novel fuzzy neural network with
interpretable, intuitive, and correlated-contours fuzzy rules for function
approximation, IEEE Trans. Fuzzy Syst. 26 (3) (2018) 1288–1302.

[43] A. Salimi-Badr, M.M. Ebadzadeh, A novel self-organizing fuzzy neural network
to learn and mimic habitual sequential tasks, IEEE Trans. Cybern.

[44] P.P. Angelov, D.P. Filev, An approach to online identification of Takagi-Sugeno
fuzzy models, IEEE Trans. Syst., Man, Cybern. Part B (Cybernetics) 34 (1) (2004)
484–498.

[45] H.-J. Rong, N. Sundararajan, G.-B. Huang, P. Saratchandran, Sequential adaptive
fuzzy inference system (SAFIS) for nonlinear system identification and
prediction, Fuzzy Sets Syst. 157 (9) (2006) 1260–1275.

[46] K. Subramanian, S. Suresh, A meta-cognitive sequential learning algorithm for
neuro-fuzzy inference system, Appl. Soft Comput. 12 (11) (2012) 3603–3614.

[47] M. Pratama, S.G. Anavatti, P.P. Angelov, E. Lughofer, PANFIS: A novel
incremental learning machine, IEEE Trans. Neural Networks Learn. Syst. 25
(1) (2013) 55–68.

[48] M. Pratama, S.G. Anavatti, E. Lughofer, GENEFIS: Toward an effective localist
network, IEEE Trans. Fuzzy Syst. 22 (3) (2013) 547–562.

[49] M.M. Ebadzadeh, A. Salimi-Badr, CFNN: Correlated fuzzy neural network,
Neurocomputing 148 (2015) 430–444.

[50] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, IEEE, 1995, pp. 1942–1948.

[51] A. Nickabadi, M.M. Ebadzadeh, R. Safabakhsh, A novel particle swarm
optimization algorithm with adaptive inertia weight, Appl. Soft Comput. 11
(4) (2011) 3658–3670.

[52] A. Barua, L.S. Mudunuri, O. Kosheleva, Why trapezoidal and triangular
membership functions work so well: Towards a theoretical explanation,
Journal of Uncertain Systems 8.

[53] E. Hosseini-Asl, J.M. Zurada, O. Nasraoui, Deep Learning of Part-Based
Representation of Data Using Sparse Autoencoders With Nonnegativity
Constraints, IEEE Trans. Neural Networks Learn. Syst. 27 (12) (2016) 2486–
2498.

[54] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1–3) (2006) 489–501.

[55] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 1–27.

[56] Z. Zojaji, M.M. Ebadzadeh, H. Nasiri, Semantic schema based genetic
programming for symbolic regression, Appl. Soft Comput. 122 (2022) 108825.

[57] S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, S.X. Chen, Cautionary tales on air-quality
improvement in Beijing, Proc. R. Soc. A: Math., Phys. Eng. Sci. 473 (2205)
(2017) 20170457.
310
[58] N. Jin, Y. Zeng, K. Yan, Z. Ji, Multivariate air quality forecasting with nested long
short term memory neural network, IEEE Trans. Industr. Inf. 17 (12) (2021)
8514–8522.

[59] J.R.A. Moniz, D. Krueger, Nested LSTMs, arXiv preprint arXiv:1801.10308.
[60] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, LSTM: A

search space odyssey, IEEE Trans. Neural Networks Learn. Syst. 28 (10) (2017)
2222–2232.

[61] H. Zheng, J. Yuan, L. Chen, Short-term load forecasting using EMD-LSTM neural
networks with a Xgboost algorithm for feature importance evaluation,
Energies 10 (8) (2017) 1168.

[62] H. Zang, L. Cheng, T. Ding, K.W. Cheung, Z. Liang, Z. Wei, G. Sun, Hybrid method
for short-term photovoltaic power forecasting based on deep convolutional
neural network, IET Generat., Transmiss. Distrib. 12 (20) (2018) 4557–4567.

[63] K. Yan, W. Li, Z. Ji, M. Qi, Y. Du, A hybrid LSTM neural network for energy
consumption forecasting of individual households, IEEE Access 7 (2019)
157633–157642.

[64] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, J. Global Optimiz.
39 (3) (2007) 459–471.

[65] K. Socha, M. Dorigo, Ant colony optimization for continuous domains, Eur. J.
Oper. Res. 185 (3) (2008) 1155–1173.

[66] D.T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, M. Zaidi, The bees
algorithm–a novel tool for complex optimisation problems, in: Intelligent
production machines and systems, Elsevier, 2006, pp. 454–459.

[67] D. Simon, Biogeography-based optimization, IEEE Trans. Evolut. Comput. 12
(6) (2008) 702–713.

[68] N. Hansen, S.D. Müller, P. Koumoutsakos, Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-
ES), Evolut. Comput. 11 (1) (2003) 1–18.

[69] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optimiz. 11 (4) (1997)
341–359.

[70] X.-S. Yang, Nature-inspired metaheuristic algorithms, Luniver Press, 2010.
[71] J.H. Holland, Genetic algorithms, Sci. Am. 267 (1) (1992) 66–73.
[72] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm:

harmony search, Simulation 76 (2) (2001) 60–68.
[73] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm

for optimization inspired by imperialistic competition, in: 2007 IEEE congress
on evolutionary computation, IEEE, 2007, pp. 4661–4667.

[74] A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired
from weed colonization, Ecol. Inform. 1 (4) (2006) 355–366.

[75] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a
novel method for constrained mechanical design optimization problems,
Comput.-aided Des. 43 (3) (2011) 303–315.

[76] S. Bisgaard, M. Kulahci, Quality quandaries: Studying input-output
relationships, part I, Q. Eng. 18 (2) (2006) 273–281.

Hamid Nasiri received the B.Sc. degree in Computer
Engineering from the Semnan University, Semnan, Iran,
in 2014, the M.Sc. degree in Computer Engineering from
the Amirkabir University of Technology, Tehran, Iran, in
2016. He is currently a Ph.D. candidate at the Depart-
ment of Computer Engineering, Amirkabir University of
Technology, under the supervision of Dr. Mohammad
Mehdi Ebadzadeh. His research interests include evo-
lutionary computing, swarm intelligence, and fuzzy
systems.
Mohammad Mehdi Ebadzadeh received the B.Sc.
degree in Electrical Engineering from Sharif University
of Technology, and his M.Sc. degree in Computer Engi-
neering from Amirkabir University of Technology, Teh-
ran, Iran, in 1991 and 1995 respectively. He received the
PhD degree in Image and Signal Processing from TELE-
COM ParisTech, Paris, France, in 2004. Currently, he is a
Professor in Department of Computer Engineering of
Amirkabir University of Technology, Tehran, Iran. His
research interests include deep reinforcement learning,
computational intelligence and computational neuro-
science.

http://refhub.elsevier.com/S0925-2312(22)01007-4/h0140
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0140
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0140
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0145
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0145
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0145
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0150
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0150
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0150
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0155
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0155
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0155
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0160
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0160
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0160
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0165
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0165
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0165
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0170
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0170
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0170
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0175
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0175
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0185
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0185
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0190
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0190
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0190
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0195
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0195
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0200
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0200
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0205
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0205
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0205
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0210
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0210
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0210
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0220
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0220
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0220
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0225
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0225
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0225
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0230
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0230
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0235
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0235
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0235
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0240
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0240
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0245
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0245
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0255
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0255
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0255
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0265
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0265
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0265
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0265
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0270
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0270
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0275
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0275
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0280
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0280
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0285
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0285
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0285
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0290
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0290
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0290
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0300
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0300
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0300
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0305
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0305
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0305
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0310
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0310
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0310
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0315
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0315
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0315
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0320
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0320
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0320
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0325
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0325
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0330
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0330
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0330
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0330
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0335
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0335
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0340
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0340
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0340
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0345
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0345
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0345
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0350
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0350
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0355
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0360
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0360
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0370
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0370
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0375
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0375
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0375
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0380
http://refhub.elsevier.com/S0925-2312(22)01007-4/h0380

	MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction
	1 Introduction
	2 Related works
	3 Background
	4 Proposed method
	5 Experimental results
	5.1 Lorenz system
	5.2 Rossler system
	5.3 Box–Jenkins gas furnace problem
	5.4 Wind speed prediction problem
	5.5 Stock price prediction problem
	5.6 Air quality index prediction problem
	5.7 Sensitivity analysis
	5.8 Ablation study
	5.9 Comparison of different metaheuristic algorithms
	5.10 State functions

	6 Discussion
	7 Conclusion
	Code availability
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


