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a b s t r a c t

Despite the empirical success of Genetic programming (GP) in various symbolic regression applications,
GP is not still known as a reliable problem-solving technique in this domain. Non-locality of GP
representation and operators causes ineffectiveness of its search procedure. This study employs
semantic schema theory to control and guide the GP search and proposes a local GP called semantic
schema-based genetic programming (SBGP). SBGP partitions the semantic search space into semantic
schemas and biases the search to the significant schema of the population, which is gradually
progressing towards the optimal solution. Several semantic local operators are proposed for performing
a local search around the significant schema. In combination with schema evolution as a global search,
the local in-schema search provides an efficient exploration–exploitation control mechanism in SBGP.
For evaluating the proposed method, we use six benchmarks, including synthesized and real-world
problems. The obtained errors are compared to the best semantic genetic programming algorithms,
on the one hand, and data-driven layered learning approaches, on the other hand. Results demonstrate
that SBGP outperforms all mentioned methods in four out of six benchmarks up to 87% in the first
set and up to 76% in the second set of experiments in terms of generalization measured by root mean
squared error.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

As a kind of evolutionary algorithm, genetic programming
s inspired by natural evolution. Although the motivation be-
ind its innovation was to achieve the success of natural evolu-
ion in problem-solving and has been applied to solve numerous
eal-world problems [1–4], some features of this algorithm con-
radict natural evolution and keep genetic programming from
aving an effective search within search space. Non-locality and
on-gradual optimization are important samples of such features.
One of the features of natural evolution is its gradualism.

ccording to Darwin’s Theory, evolution is a slow but gradual
rocess in which environmental compatibility occurs via gradual
orrections on the individuals. Natural selection is considered the
ost important mechanism of evolution [5]. Darwin states that
atural selection takes place only when consequent, but slight
hanges happen. Evolution can never have significant and sud-
en mutations or saltation. It should proceed with small, steady,
nd indeed slow steps [6]. He also takes into consideration the
radualism of changes in the phenotype. Although gradualism is
ne of the main principles of Darwin’s theory of evolution [7], it
as not been included in standard genetic programming.
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The locality is both the feature of representation and op-
erators. It has been shown in previous researches [8–14] that
the locality of representation and genetic operators significantly
affect an evolutionary algorithm. The locality of representation
means that small changes in genotype cause small changes of
phenotype. It means that the neighborhood is preserved during
genotype–phenotype mapping and referred to as the continuity
of the genotype–phenotype map. This map is continuous when
there is a causal relationship between the data structure of an
individual and its equivalent function. On the other hand, a ge-
netic operator is called local when the offspring it produces is
semantically close to the parents. Non-locality within the evolu-
tionary algorithms domain is stated under various titles, such as
the absence of causality and imbalance between exploration and
exploitation.

The representation of standard genetic programming is not lo-
cal [15] because small changes in programs cause intense changes
in their behavior [16]. For instance, in Fig. 1 an individual has
a tree view of (∗x(∗x x)) representing F1(x) = x3. If * symbol
(multiplication) is substituted with + symbol (addition) in this
individual’s root, the resultant individual will be ((+x(∗x x))). Al-
though there has been a small change in genotype, the equivalent
function of the individual turns from F1(x) = x3 to F2(x) = x2 + x,
which is significantly different from F1 in semantically.

In standard genetic programming, operators also have weak

locality (causality) [15]. In genetic programming, usually, the
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Fig. 1. An example of discontinuity of non-locality of GP representation.
ffsprings that are specifically generated through recombination
iffer significantly from their parents, from both syntactic and
emantic aspects. An essential reason for these operators’ non-
ocality is that semantic units are not clear in genetic program-
ing. In the genetic algorithm, genes play the role of semantic
nits. In contrast, in genetic programming, one node has no in-
ependent meaning on its own but becomes meaningful accord-
ng to the context. Therefore, an almost-independent meaning
as to be sought in subtrees and building blocks, considered
ub-solutions of the final solution. Yet, there is still no specific
efinition for semantic building blocks, and recombination, the
ain operator of genetic programming, has no information of
emantic borders of the subtrees. As a result, it chooses the cross-
ver points randomly and usually destroys the building blocks.
ence, the offspring has a significant semantic difference from
he parents. The difference is not beneficial, as the fitted parts of
he parents are often destructed not combined to produce better
ffsprings. In other words, the main mechanism of evolutionary
lgorithms is the gradual discovery of partial solutions and their
utomatic combination (using the operators) to achieve more
omplete solutions. However, when applied to the tree repre-
entation of genetic programming, this approach becomes quite
hallenging since recombination alters genomes or semantic units
nd decreases the chance of this operator’s usefulness to a great
xtent [17]. Locality (causality) is a key feature, effective on
xploration and exploitation of evolutionary algorithms [18]. The
tronger the locality of an operator, the greater its exploitation,
nd the weaker its locality, the higher its exploration [15]. In turn,
igher exploration causes greater diversity in the population; and
igher exploitation results in lower diversity [19].
In this paper, we propose the semantic schema-based genetic

rogramming (SBGP) algorithm. To solve the non-gradual evo-
ution of genetic programming, it partitions the semantic search
pace into some sub-spaces and biases the search to one of these
ub-spaces, gradually progressing towards the optimal solution.
he proposed algorithm utilizes schema theory to define the
artitions in a way that it divides the semantic search space into
maller sub-spaces. For biasing the search towards the schema, it
ntroduces new local operators.

While many researchers used genetic programming for clas-
ification [20–22], we focus on the symbolic regression problem
n this paper. The main idea of symbolic regression is finding
quations that describe the variables relations. These formulas

an provide scientifically meaningful models, particularly when

2

combined with the domain knowledge. Although the idea of
symbolic regression has existed for a long time, it has begun
to make a noticeable impact on real world research areas such
as medicine, physics, chemistry, biology, and engineering, in the
last decade. Therefore, developing effective symbolic regression
algorithms can make significant progress on successful solving of
a wide range of real-world problems. In this paper, in addition
to synthesized benchmarks, we applied the proposed method on
four real world problems taken from the biology, engineering and
pharmacokinetics domains to show the capabilities of SBGP in
deploying in the real world applications.

The rest of this paper is organized as follows. Section 1 pro-
vides an introduction to the research problem. Section 2 ex-
plains the necessary background concepts. In Section 3, related
researches are described. The proposed method is presented in
Section 4. In Section 5, the experimental results are reported and
analyzed. Finally, Section 6 is the conclusion of the paper.

2. Background

In this section, schema theory is first described, the notion
of semantics is then clarified, and semantic schema is finally
introduced.

2.1. Schema theory

A schema is a pattern of similarity, matching a set of search
space points. The schema theorem describes how the number
of schema instances changes through evolution. Based on the
genetic algorithm’s schema theory [23], Koza proposed the first
genetic programming’s schema theory in 1992 [24]. He defined
a set of complete subtrees as schema, for instance, H = (+xy),
(+x(×xy)). An individual matches H if it contains both subtrees.
The schema theorem’s general form is given in (1).

E[m(H, t + 1)] = Mα(H, t). (1)

Where E[m(H, t + 1)] is the expected number of instances of
schema H in (t + 1)th generation, M denotes the population size,
and the probability of a newly generated individual instantiates
H (the transition probability) denoted by α [24]. Schema theory
in [24] can be used to calculate a lower bound for the expected
number of individuals belonging to a particular schema.

The building block hypothesis was first proposed by Gold-

berg [25]; according to this hypothesis, GA works by combining
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uilding blocks, low order, short, and highly fit schemas [24].
he notion is extended in several works to introduce semantic
uilding blocks. In [26], these building blocks are considered
oints of the semantic space with high value that frequently occur
n the population.

.2. Semantics

Semantics is a knowledge that determines the concept of syn-
actic symbols [27], demonstrating what the tree really does [28].
tree’s semantics refers to its behavior. The semantics of a tree in
oolean domains is defined in [29] by McPhee et al. in 2008. They
epresent the semantics as the tree’s output values for all possible
nput values combinations. Yet, in the domain of real numbers,
ne cannot calculate the tree output for all possible inputs since
here is an infinite number of possible input cases. Although for
he real-valued domain, there is no widely accepted definition
or semantics, in several researches including [27,29–33], a tree’s
emantics is regarded as its output vector for various input fitness
ases. This definition is called sampling semantics [30]. According
o this definition, an N-dimensional vector represents each tree
n semantic space, where N denotes the number of fitness cases.
ome researchers [34–36], rather than focusing on the program’s
utput, used its execution’s behavioral features to define se-
antics for the real-valued domain. In [26], the semantics of
n individual is described in terms of the normalized mutual
nformation between its output and the target.

.3. Semantic schema

As described before, a traditional definition of schema refers to
subset of points in the search space that shares some syntactic
haracteristics [24], which we call a syntactic schema. Although
he instances of a syntactic schema are syntactically similar, they
o not behave similarly [26,37]. Since there are several major
ssues relying on syntactic schema theories to model the popula-
ion’s behavior, semantic schema theory was originally proposed
n [26]. The semantic schema can reliably describe the seman-
ically similar individuals who also behave similarly. In further
esearches [37,38], authors improved their proposed schema in
erms of generalization and computational complexity. A compre-
ensive comparison between these schemata is provided in [38].
s discussed in [38], the Information Clustering-based Semantic
chema (ICSS) is the best proposed semantic schema in terms
f generalization and computational complexity. In this work,
he notion of semantics for a tree is considered the mutual
nformation between its output and the target. For modeling
chema instances, semantic building blocks were extracted and
mployed. Semantic building block refers to a semantics value
hat frequently occurs in promising individuals of the population
hen the subtrees of these individuals are mapped into semantic
pace. Building blocks propagate on the promising individuals of
he population dependently, and combine to produce the target
olution. A novel approach called information-based clustering was
hen utilized for clustering the discovered building blocks of the
opulation.
A semantic schema is composed of two modules: (1) a cluster

et of semantic building blocks (2) a schema instantiation func-
ion that describes the distribution model of building blocks in
chema instance.
For extracting the major schema of an arbitrary population,

alled the significant schema, some steps should be taken, as illus-
rated in Fig. 2. First, the initial schema instances should be spec-
fied, which are considered individuals with more than average
emantics of the population. Next, the semantic building blocks
3

re extracted from the set of initial samples, and some schema-
elated parameters are estimated. After that, information-based
lustering is applied to extracted building blocks. The instan-
iation function is then specified according to learned schema
arameters. This function considers the effect of a building block
n its cluster. Accordingly, a semantic schema is a set includ-
ng all individuals with effective enough building blocks from
arious clusters. Refer to [38] for more details on information
lustering-based semantic schema.

. Related works

There have been numerous studies on integrating semantics
ithin genetic programming. They have chiefly shown that the
se of semantics can improve the power of this algorithm. As
iscussed in Section 2.2, various definitions of semantics were
roposed by researchers. The majority of previous genetic pro-
ramming versions has ignored trees’ semantics and has only
perated in the syntactical space. Yet, the use of semantic meth-
ds in genetic programming has gained attention and extensive
tudy in recent years. A great deal of work concentrated on incor-
orating semantics in computing diversity, initializing the pop-
lation, selection strategy and bloat control mechanism which
re described in Section 3.1. Many of the conducted researches
n semantic genetic programming are dedicated to the devel-
pment of semantic operators. These studies are divided into
wo main groups [28]: indirect and direct methods described in
ections 3.2 and 3.3 respectively. The former is based on trial and
rror and, using the operators, manipulating trees at the syntactic
evel to produce new offsprings. The generated trees enter the
ext generation population if they satisfy specific semantic con-
traints, which are usually defined concerning diversity, locality,
nd geometric relations within semantic space. The latter denotes
perators that produce the offspring directly in semantic space.

.1. Semantic methods

Some researchers have investigated semantic diversity, they
efined this concept based on the distribution of fitness val-
es [39] or tree behavior at runtime [40]. In [41], a new se-
antic diversity metric was proposed based on the transformed
emantics of models. Many researchers [42] concluded that a
emantically diverse initial population could increase genetic pro-
ramming’s performance. Pawlak and Krawiec [43] have pre-
ented a semantic method for initializing the population, suitable
or genetic programming with geometric semantic recombina-
ion [31]. Galvan-Lopezet al. [44] introduced a simple method
o consider trees’ semantics in the selection process, aiming to
nhance semantic diversity. Ruberto et al. [45] proposed SGP-
T, a new semantic genetic programming algorithm based on
he dynamic target. Nguyen and Chu [46] proposed two seman-
ic approximation-based methods for controlling bloat in ge-
etic programming. Miranda et al. [47] introduced an instance
election method for reducing the dimensionality of geometric
emantic genetic programming space.

.2. Indirect methods

Some studies [29,32,48] have been conducted based on in-
irect methods with diversity constraints. In this way, the off-
pring should differ from their parents semantically. Semantic
onstraints in some researches are considered based on the lo-
ality. The goal of such methods is to produce offsprings with
o significant semantic difference from their parents. Nguyen
t al. [49] introduced various semantic aware crossovers (SAC) for
oolean problems. Afterward, they expanded these operators for
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Fig. 2. The semantic schema extraction [38].
he domain of real numbers [50]. Instead of accurate semantics,
hey used an approximate one, in which semantics included a
ree’s output for a random set of input samples. Later, the au-
hors presented Semantic Similarity-based crossover (SSC) [30],
hich emphasized local behavior of crossover and swapped some
ubtrees in the parents that differed semantically, but not sig-
ificantly. Afterward, an improvement of SSC, the most semantic
imilarity-based crossover (MSSC), was proposed [51], and even-
ually, the semantic mutation was introduced [30]. The impact of
SC on population diversity got analyzed in [52]. As a result of this
tudy, Nguyen et al. [53] found that increasing semantic locality
ould improve the performance of genetic programming.
Some of the conducted studies are focused on geometric se-

antic operators [27]. In these methods, the operators are de-
igned to allow the produced offspring to occur in the semantic
pace between the parents. Krawiec and Lichocki [33] claimed
hat the offspring produced by a complete geometric crossover
ould be better than at least one of the parents. Due to the
omplexity of genotype–phenotype mapping, they proposed an
pproximating Geometric Crossover (AGC). In this crossover, the
ffsprings with maximum semantic similarity to the parents will
e accepted, even if they are not placed exactly between them.
oreover, a locally geometric semantic crossover [27] was pre-
ented that produced a bank of all possible subtrees until a
pecific depth. After selecting the parents’ subtrees for swap,
he closest subtree to their semantic average was selected from
he bank and was replaced in the offspring. Later, Krawiec [54]
roposed a crossover operator that produced medial offsprings.
fterward, two approximating geometric crossovers called AGX
nd RDO [55,56] were introduced that used semantic backprop-
gation to select suitable subtrees for swap. In the AGX oper-
tor, firstly, the parents’ output average vector, known as M,
s calculated. Then the crossover points are selected, and using
ackpropagation, the swapping subtree’s semantics are computed
n the parents to allow the offsprings to be similar to M as much
s possible. Then the prebuilt library is searched for the most
imilar subtree to the calculated semantics, and it is substituted
ith parents’ subtree. RDO operator is applied on one parent. At
4

first, it randomly selects a subtree in the parent. Then, employing
backpropagation, it determines this subtree’s semantics in a way
that after replacing in the parent, the tree’s output will have the
highest similarity with the problem’s objective.

3.3. Direct methods

Direct semantic methods belong to the ones that produce the
offspring directly at a semantic level. The idea of direct meth-
ods was first proposed in 2012 by Moraglio et al. [31]. They
offered accurate geometric operators, called Semantic Geometric
Crossovers (SGX), which searched the semantic space directly.
In symbolic regression, the result of recombination in semantic
space is a weighted average of parents’ semantics. Offspring’s
semantic in the syntactic space could be realized by generating
a tree that calculates the weighted average on top of the parents’
root that cause the offsprings’ size in each generation to face
extreme growth. Some researchers [33,55] have proposed ap-
proximate geometric semantic recombinations to overcome this
problem, which had a good performance like accurate geometric
operators. A strategy to control the exponential growth of pro-
grams in [31] is to reduce the size of generated offsprings during
the recombination, which was previously studied in [57]. Another
proposed strategy is the direct search of the semantic space
while saving the initial population simultaneously and applying
changes to it during the evolution [58]. In this method, after the
evolution, the best individual of the population is generated by
applying some changes to its predecessors from the first genera-
tion to the last one. This kind of genetic programming was later
tested on several real-world problems like [59,60]. In addition, a
geometric mutation was designed and introduced in the semantic
space [61], which produced offspring smaller than its parents or
equal in size. Later on, Angwin et al. [62] presented a subtree
semantic geometric crossover (SSGX), which approximated the
parent’s semantics with one of its smaller subtrees, then applied
SGX. Moreover, in this method, the standard crossover has a
probability of occurrence, so that diversity could be kept high. The
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ffect of population size on geometric semantic genetic program-
ing has been studied in [63] and the operators probabilities
ave been adjusted by the proposed algorithm of [64].

.4. Layered learning genetic programming

In what follows, some of the best versions of genetic pro-
ramming will be introduced that tried to make gradual evo-
ution through data layering, have high generalization, and are
mployed for comparison with the proposed method.
Random Sampling Technique (RST) is proposed by Gonçalves

t al. to control overfitting in genetic programming [65]. RST
mploys a random subset of training samples in each genera-
ion. Thus, the chance of survival in the population is higher for
hose members with higher performance over different subsets
f training samples. Castelli et al. [66] designed a quantitative
est on learning and generalization of genetic programming, thus
roposing a criterion for function complexity, called ‘‘Graph-
ased Complexity’’ (GBC). This criterion is based on the idea
hat functions that are more complex should have less degree of
urvature than smoother ones. They introduced a fitness function
ased on this criterion to increase the generalization GP. Hein
t al. [67] studied the influence of stage-based layered learning
ith incremental sampling. They then improved this method,
sing the Progressive Sampling (PS) to determine the initial set
nd the number of layers. PS provides a method to work with
ig data. Their results have shown that layered learning along
ith incremental sampling could increase learning speed without
arming generalization. A modified version of genetic program-
ing to improve generalization is VBLL-GP [68], in which some
impler datasets are generated by taking the root of initial data.
t the beginning of the evolution, the simplest dataset is used and
uring the evolution, more complex data are gradually provided
o the algorithm. SGP [69] is a gradual variant of GP that uses
tatistical information of the trees to improve generalization. A
ell-made tree is introduced as the tree whose output’s corre-

ation with target increases while moving from the leaf to the
oot. SGP search is limited in a way to find trees that are as
ell-made as possible. Thus, it limits trees’ complexity. Recently,
CGP [70] presented by Hosseini Amini et al. is a variant of
P developed based on the imperialist competitive algorithm.
CGP also benefits from a set of predefined rules for producing
etter offsprings. In this algorithm, local search is first carried
ut on countries and then combined into a global search through
perations like assimilation and revolution.

. Proposed method

For solving the problem of non-gradual evolution of genetic
rogramming, we propose SBGP, which partitions the semantic
earch space into some sub-spaces and biases the search to one of
hem that is changing during the evolution, gradually progressing
owards the optimal solution. This approach conforms to the
aised theories in natural evolution. Our introduced sub-spaces
mply ‘‘species’’ in nature. In this paper, we employed the schema
o play the role of the species concept in GP evolution so that
eproduction takes place in one species and the species evolve
radually. In the definition given by Thompson [71], a species is
group of individuals detected using a series of constant and

nducible properties and connected via hereditary and genetic
elationships. In nature, recombination mostly occurs inside a
pecies and the offspring belonging to the parents’ species. In
act, species’ evolution from one to another has rarely occurred in
ome specific cases with the passage of considerable time as all
lora and fauna have appeared from primitive unicellular organ-
sms. The proposed method has considered the species’ alteration
nd evolution, which comply with the natural evolution process.
5

We utilize schema theory to partition the semantic search
space into sub-spaces. This paper regards locality as being a mem-
ber of the schema. Instead of considering producing offsprings
between or close to the parents, it takes both parents and their
offspring as members of the schema so that they will have a
meaningful local relationship. In a nutshell, for the following
reasons, the schema theory has been chosen as a tool to make
genetic programming’s search gradual: (1) presenting sub-spaces
from the search space, (2) strong theoretical background, and
(3) modeling the operators’ effect in the form of mathematical
equations.

After partitioning the semantic search space into sub-spaces,
the next step will be to bias the search towards the schema,
achievable by introducing local operators. To localize genetic
programming’s search, we introduce several local operators, each
with a probability of occurrence. In fact, the appropriate al-
gorithm’s prerequisite is the presence of schema-biasing local
operators.

4.1. SBGP algorithm

In this section, Schema-Based Genetic Programming (SBGP) is
introduced and evaluated. SBGP algorithm uses schema theory
to divide the space into some sub-spaces. Furthermore, the pro-
posed semantic schema is based on the building blocks, some
genes that produce appropriate semantic characteristics in an
individual. To produce individuals matching the schema means
to propel the operators towards producing offsprings that actively
incorporate the building blocks of the schema within themselves.
Fig. 3 shows the flowchart of the SBGP algorithm. Various steps
of this algorithm are described below:

• Generating the initial population The initial population is
generated employing the ramped-half and half method with
limited depth in the first step. The initial samples of the
schema should be identified in this population.

• Semantic schema Extraction: Once the initial population is
generated, the individuals, semantically higher than the popu-
lation average, are taken as preliminary samples of the schema,
and ICSS Schema is extracted from the mentioned population
as it was illustrated in Fig. 2. More precisely, at first, the build-
ing blocks are extracted from the population and clustered.
Afterward, the obtained clusters are used to form membership
functions and identify schema samples.

• Generating the next generation with schema bias: In this
step, the local operators, introduced in the next section, are
used by considering the corresponding probability of occur-
rence. Moreover, the standard recombination and mutation
also have a chance to occur to keep the population diverse.
Some of the introduced local operators need schema instances
as the parents, some operate on any parent, and some generate
the samples without any parent. In fact, in this step, the search
mechanism should exploit the search space; however, in the
case of the low diverse population, more exploitation causes
premature convergence. As a result, we adjusted the proba-
bility of using standard recombination and mutation inversely
proportional to the population diversity. Given in (2), this
diversity is a semantic diversity, calculated as the standard
deviation of the population’s individuals’ semantic. In addi-
tion, (3) gives the probability of using standard operators. This
probability is calculated adaptively during the evolution. At the
beginning of the evolution, when the population’s diversity is
high, the probability of using standard operators is low. As gen-
erations pass, this probability increases. More offsprings with
standard operators are generated to establish the necessary
potentials for the next schemas and provide an appropriate
balance between exploration and exploitation.
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diversity(popg ) =

√
1

popSize

∑
i∈pop

(s(i) − s(i))2 (2)

pstd = −
log(diversity(pop))

10
(3)

• Conditions for schemas transition: In natural evolution, a
transition from one species to another occurs as an effect of
events such as a change in gene frequency, ecological environ-
ment changes, and intensive mutations. Various genetic theo-
ries believe that this transition might occur smoothly (Phyletic
Gradualism) or suddenly (Punctuated Equilibria) [72]. The for-
mer is equivalent to implicit bias towards a new schema, while
the latter is equivalent to explicit mutation of the schema.
Considering the flowchart in Fig. 3, the conditions of transition
to the next schema should be evaluated in each generation.
These conditions should be defined in a way to show whether
the evolution within the schema has taken place sufficiently
or not. The greater the local evolution within the schema, the
more the exploitation and the less the population diversity.
Therefore, we define transition criterion as semantic diversity
of the population, given in (2). Afterward, diversityRatio shows
the proportion of current population diversity in generation g
to the average diversity of recent generations, provided in (4).
The diversity is averaged over a sliding window, with length
w. If diversityRatio is less than the threshold diversityThr, a
new schema is extracted from the population. Given that the
population’s average fitness increases through generations, the
new schema’s fitness is higher than the previous one. As a
matter of fact, the schema itself evolves. Schema transition
propels the search towards exploration to consider new parts
of the search space.

diversityRatio =
diversity(popg )

1
|w|

∑w

i=1 diversity(popg−i)
(4)

• Fitness
In SBGP evolving is performed in semantic space which leads to
discover individuals that are semantically equal to the optimal
solution and high semantic value does not necessarily denotes
low error. Since SBGP is presented for symbolic regression
domain, a linear correction is applied to individuals’ output
prior to the fitness calculation. This correction is not valid in
other domains like classification but it can be customized in
further researches.
In order to evaluate the fitness of individuals in the popula-
tion, linear regression coefficients of each individual is calcu-
lated and incorporated into the individual’s function. Then root
mean squared error (RMSE) over the modified individual is
considered as the performance measure. Applying regression
transformation as a linear correction on the individuals with a
high semantic value also results in obtaining high fitness cal-
culated in terms of RMSE. This transformation, however, does
not involve the genotype space of the tree, but is considered
only in calculation of individuals’ fitness.
We denote the output of tree t by Y for input samples, target
output by Z, and the output of tree after transformation by Y’
that is calculated using (5):

Y ′
= αY + β,

α =
cov(Y , Z)
var(Y )

, β = Z − aY
(5)

where cov and var symbols stand for covariance and variance
operations, respectively, α and β are the regression coeffi-
cients initially applied on the tree’s output. Then the error is
calculated using Y ′, as the transformed output of the tree.
 r

6

Fig. 3. Flowchart of the SBGP algorithm.

The pseudo-code of the SBGP algorithm is shown in Fig. 4.
n this pseudo-code, the parameters of genetic programming,
raining data, and validation data are given as input, and the best
ndividual is returned as output.

.2. Local operators

This paper introduces several local operators to localize the ge-
etic programming’s search. Each has a probability of occurrence
n the SBGP algorithm. These operators encourage the build-
ng blocks to occur and prevent them from destruction. The
roposed operators are: 1. indirect local recombination, 2. indi-
ect local mutation, 3. direct local mutation, and 4. parentless
hild-production operators, each elaborated below. The goal of
ocal recombination and mutation operators is to bias the off-
pring towards the schema. The aim of the parentless child-
roduction operator is to generate individuals that are instances
f the schema.

.2.1. Indirect local recombination operator (ILRO)
This recombination is a single-child one that gets two schema-

nstances parents as input and generates an offspring, which is
tself an instance of the schema. This operator uses a trial and
rror method, finding the recombination points in the parents,
herein at least one of the offsprings is a sample of the schema
ia the recombination of these points. If both offspring are sam-
les of the schema, the one with a higher membership value
n that schema is selected. Fig. 5 gives the pseudo-code of this
ecombination.
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Fig. 4. Pseudo-code of SBGP algorithm.
As the figure shows, the offspring should have a maximum
ermissible size. Subtrees selected for recombination are checked
or semantic equality, and it is guaranteed that recombination
enerates semantically different individuals from parents. There-
ore, this operator increases the semantic diversity, leading to the
xploration of new semantic space points.

.2.2. Indirect local mutation operator (ILMO)
This operator gets a schema instance as the parent and ap-

lies the subtree mutation to generate another instance of the
chema as offspring (Fig. 6). For doing so, a random node of
he parent is selected and then replaced by a new randomly
enerated subtree. This procedure is repeated until the gener-
ted offspring is a schema instance too. If after maxCount at-
empts, no schema-instance offspring is generated, instead of a
andom subtree, a subtree that is biased towards building blocks
s generated. The mutant generation is repeated until the final
ffspring becomes a schema sample. To generate a random tree,
enerateRandomSubTreeWithBBInTerminals function considers the
uilding blocks as terminals. Thus it causes the tree generation
7

process to include more building blocks, increasing the prob-
ability of schema membership. This operator tries to generate
the schema instances as offspring without any bias, keeping the
population’s diversity high. In the case that this goal cannot be
achieved, the operator becomes biased. The depth between the
root and the selected point for the mutation (mp) is calculated
by the depth (mp) function. By subtracting this value from the
maximum depth, the maximum permissible depth (offDepth) is
determined. When generating the random subtree, this depth is
taken into consideration.

The following example demonstrates a schematic view of ap-
plying indirect local operators.

Example
Assuming function x4 + x3 + x2 + x as the target, consider

a semantic schema H which is defined based on two semantic
building block clusters along with an instantiation function that
checks the active occurrence of these clusters in a tree (refer to
Section 2.3 for detail definition of the semantic schema). Each
cluster center is a semantic building block that is associated with
a minimal tree known as representative tree. Let c = x3 and
1
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Fig. 5. Indirect local recombination pseudo-code.
Fig. 6. Indirect local mutation pseudo-code.
2 = x2 + x be representative trees for the centers of clusters C1
nd C2, respectively. Consider P1 and P2, illustrated in Fig. 7, as
wo instances of schema H in which building blocks of clusters
and 2 occurred, actively. It can be seen in the figure that P1

ncludes both c1 and c2. P2 includes x3 + 1 and 2x2 + 2x which
re semantically equal to c1 and c2, respectively. According to the
lgorithm of ILRO provided in Fig. 5, crossover points are selected
andomly until a pair of points are founded upon which applying
rossover generates at least one offspring that is an instance of
. Consider for example the first selected points in P1 and P2 are
OP1 and XOP2. None of the resulting offsprings namely O1 and O2
re schema instances. Because crossover points are selected such
hat one building block of each parent is destroyed and generated
rees do not contain any subtree in one of the required clusters
f H.
Meanwhile if the crossover points XOP′

1 and XOP′
2 are se-

ected, O3 and O4 are generated. O3 does not contain any subtree
rom cluster C but O consists of both x3 and x2 + 2x subtrees,
1 4

8

which are semantically equal to c1 and c2, respectively. Therefore,
O4 is an instance of H. The role of ILRO is finding randomly
crossover points such as XOP′

1 and XOP′
2 that leads to at least one

schema instance. For operator ILMO represented in Fig. 6, similar
argument holds. If the selected subtree for mutation is replaced
with a random subtree such that building blocks are destroyed,
the offspring is not a schema instant anymore and other subtrees
should be generated. If the alternate generation and replacement
of the subtree do not result in the production of schema instance,
the subtree generation is biased towards the building block clus-
ters that do not exist in the context of the parent. For example,
if in P1, XOP′

1 is selected as mutation point it should be replaced
with a subtree containing a building block of cluster C1.

4.2.3. Direct local mutation operator (DLMO)
The direct local mutation is an operator that generates an

offspring, which is an instance of the schema from any arbitrary
parent. Fig. 8 gives the pseudo-code of this operator. Initially,
this operator selects a node for mutation in the parent. Then, it
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dentifies the building blocks in the context of the tree. By
‘context’’, we mean part of the tree that remains after removing
he selected subtree for mutation. At this time, the cluster centers,
hich have no member actively present in the parent, are added
o neccessaryBBs set, and the random subtree that is biased to-
ards this set is generated. When generating the random subtree,
iven the remaining depth of the tree, it is decided whether the
uilding block could be chosen or not. At the depths in which the
uilding block can be selected, a probability for building blocks,
unctions, and terminals is considered to keep the population
iversity high.

.2.4. Parentless child production operator (PCPO)
This operator directly generates a tree that is an instance

f the specified schema, needless of any parent (Fig. 9). The
perator instantiates the schema to generate offspring. To this
im, a random tree is generated from the set constructed from
he union of terminals and the building blocks. Building blocks
 s

9

ave the chance of being selected as terminals with the prob-
bility of ϵ. When a building block is inserted, first, a building
lock cluster is chosen randomly. Afterward, a block from this
luster is inserted in the tree randomly. Then, this cluster is
emoved from the set of remaining clusters. This algorithm helps
enerate some offspring that include building blocks from differ-
nt clusters. The mentioned random tree is generated in a re-
ursive function called GenerateRandomTreeWithRemainingClus-
ers; however, given that the presence of all clusters in the tree
s not necessary, the PCPO function checks the schema’s mem-
ership to reconstruct trees that are not samples of the schema,
practice inspired by the advances of genetic engineering in
roducing parentless artificial creatures.

.3. Generalization

To preserve the generalization of SBGP, we used a validation
et to avoid overfitting in addition to training and testing sets. To



Z. Zojaji, M.M. Ebadzadeh and H. Nasiri Applied Soft Computing 122 (2022) 108825

p
w
t
t
p
t
e
p
w
t
f
s
b
u
s

5

f
w
t
f
g
s
a

i
a
n
e
c
p

Fig. 8. Direct local mutation operator pseudo-code.
ut it more precisely, the validation set has been utilized in two
ays: (1) Stopping criteria In each generation of the algorithm,
he error of the best individual of the population is calculated on
he validation set. If this error is greater than the error in the
revious generation, the algorithm is terminated because more
raining results in overfitting and subsequently increases the test
rror. (2) Elitism: In each generation, the best individual of the
opulation upon the validation set enters the next generation
ithout any change so that its spread in the population can
ransform the population towards better generalization. Apart
rom using the validation set, the offspring’s bias towards the
chema causes individuals’ production to become constrained
oth in semantic and genotypic spaces. This, in turn, prevents
nrestrained growth of the trees and overfitting to the training
et.

. Experimental results

To evaluate the proposed method, we compare SBGP’s per-
ormance in terms of training error, test error, and trees’ size
ith many versions of genetic programming, which fall under
wo categories apart from standard genetic programming. The
irst category includes the best versions of semantic genetic pro-
ramming. The second one involves those algorithms that have
omehow performed gradualism via data-driven layered learning
nd focused on the algorithm’s generalization.
The main performance measure is the RMSE error of the best

ndividual. Moreover, during the evolution, changes in the size
nd semantics of the best tree are studied. The number of domi-
ant schema samples in each generation, and the rate of schema
xtraction are also some items to be studied. Furthermore, the lo-
ality of the proposed method is compared with standard genetic
rogramming.
10
5.1. Benchmark functions

When selecting benchmark functions, we tried to select six
well-known problems for symbolic regression that are used to
evaluate most of the similar works. Four of them are real world
applications and the remaining ones are synthetic complicated
benchmarks. The complexity of benchmarks was also of a great
concern in dataset suit preparation from various aspects such
as the number of dimensions, the number of instances, and the
fitness landscape. Table 1 shows the employed benchmark func-
tions. It reveals the number of dimensions, the size of training,
testing, and validation datasets, as well as the sampling method
in the case of synthetic functions. Moreover, some important
related works that used each benchmark are reported in the
table.

The pollen dataset is a real world dataset from StatLib,1 which
includes observed geometric features of the pollen grain in 3
dimensions and its weight as the target. The Concrete com-
pressive strength dataset is chosen from UCI Machine Learning
Repository,2 which predicts the quantitative value of compressive
strength of a concrete based on its composition. Bioavailability
dataset is also another real world dataset in pharmacokinetics
area. The features of each record in this dataset are molecular
descriptors that identify a drug, the output is the percentage of
the drug that can effectively enter systemic blood circulation. The
dataset is also known as %F in some references. Toxicity dataset
is also a real world dataset in pharmacokinetics domain. Each
feature in this dataset is a molecular descriptor for a specified
drug, and its output is the drug’s median lethal dose. That is the

1 http://lib.stat.cmu.edu/datasets/pollen.data
2 https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

http://lib.stat.cmu.edu/datasets/pollen.data
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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Table 1
Benchmark functions to evaluate SBGP.
Name No. of dimension Training data Testing data Validation data Used in

Pollen 4 1927 1154 766 [68,70,73]
Concrete 8 517 309 204 [62,67,68,70,74–76]
Bioavailability 241 180 104 70 [66,68,70,74]
Toxicity 626 118 70 45 [65,66,68,70,75]
UBall5D 5 100 random points in

[0, 6]
500 random points in
[0, 6]

100 random points in
[0, 6]

[30,68,70,75–77]

RatPol2D 2 50 random points in
[0.05, 6.05]

1156 points
[−0.25 : 0.2 : 6.35]

50 random points in
[0.05, 6.05]

[30,68,70,78]
required amount of compound to kill half of the considered test
organisms. This dataset is also known as LD50. All the mentioned
datasets have been sampled with ratios of 50%, 20%, and 30%
for training, validation, and testing datasets, respectively. The
UBall5D and RaTPol2D benchmark functions are given in (6), and
(7), in order.

f (x) =
10

5 +
∑5

i=1(xi − 3)2
(6)

f (x, y) =
(x − 3)4 + (y − 3)3 − (y − 3)

(y − 2)4 + 10
(7)

The four first benchmarks are corresponding to the real world
problems from different domains. Concrete benchmark repre-
sents a highly non-linear function of concrete age and ingredients.
Bioavailability and Toxicity are from the area of pharmacokinet-
ics. In addition to the applicative importance of these benchmarks
in the domain of drug discovery, the difficulty of the problems
11
motivates their choice. In both datasets the number of dimen-
sions is high but the proportion of the number of dimensions
to the number of available instances is extremely high. This
makes constructing and generalizing the related function very
challenging. From these benchmarks, UBall5D and RatPol2D are
synthesized functions. UBall5D is a function that requires extrap-
olation, not just interpolation [79]. In addition, it is stated in the
literature (e.g. [79,80]) that this problem has much difficulties in
discovering the harmonious input–output relationship. RatPol2D
is a difficult problem from the generalization point of view, since
in this benchmark the testing data are distributed in a wider
range than training data.

5.2. Settings

Table 2 shows the configuration of genetic programming and

the parameter settings of SBGP. The parameter ‘‘number of bins’’
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Table 2
Genetic programming and SBGP parameter settings.
Parameter Value

Population size 200
Number of generations 100
Fitness measure RMSE
Initial population generation Ramped half-and-half
Probability of selecting the functions for the generation of the tree 0.66
Parent selection Tournament selection (size 4)
Survival selection All offspring
Recombination probability (local and standard) 0.7
Mutation probability 0.2
Parentless child production probability 0.1
Maximum initial depth 6
Maximum permissible depth 17
Function set }+, -, *,/{
Number of elites 3
Diversity threshold for schema transition (diversityThr) 0.9
Number of bins

√
training data

Length of the diversity sliding window (w) 3
Number of ERC 100 points within [0, 1]
utilized for estimating continues mutual information is set
adaptively to the square root of the number of training samples as
suggested in [81–83]. Some parameters (like the population size,
fitness measure, parent selection method, trees’ max depth, and
the number of constant random numbers) have been set equal to
the compared approaches to provide a fair evaluation framework.
Other parameters, however, (like the probability of mutation and
diversity threshold) have been set through trial and error to the
best values.

The population model is a generational model, in which the
roduced offspring form the next generation directly. The three
est trees of the previous generation replace the worst offspring
s elites. Two of them are the best individuals based on training
ata, and one, the best individual in accordance with validation
ata. In all tests, the results are an average of 20 independent
uns.

For each benchmark, the number of terminal variables is equal
o the problem dimensions. Moreover, at the beginning of each
un, 100 ephemeral random constants (ERC) are generated be-
ween 0 and 1 to be added to the terminal set. Due to providing
air comparison conditions, similar to compered methods, no
onstant is considered for Bioavailability and Toxicity problems;
nstead, the dataset features are utilized as terminals.

.3. Accuracy

Since an individual’s accuracy is inversely related to the error
etween its output and the target, for evaluating the accuracy of
BGP, we measure the individual’s training error in terms of RMSE
riterion. The lower error indicates the greater accuracy. Fig. 10 il-
ustrates the SBGP convergence process in terms of the error over
ifferent benchmarks. For each benchmark, the average error of
he population has been compared with the error of the best indi-
idual of the population during the evolution. As a result of using
litism, the best individual’s error obeys a non-ascending trend
n all benchmarks. It can be also inferred from the figure that
iversity preserving mechanism of SBGP prevents the algorithm
rom premature convergence in all benchmarks. Furthermore,
ince validation set has been used to stop evolution, in some
enchmarks (e.g. UBall5D in generation 50 and RatPol2D in gen-
ration 70), the evolution has been terminated sooner than 100
enerations and prior to the convergence to prevent overfitting.

.4. Evolution in semantic space

The semantic changes of the best individual along with the
emantic average of the population are demonstrated in Fig. 11.
12
As it can be inferred from the figure, by proceeding the evolution,
the semantics of the population’s individuals increase. The rising
trend of the semantics values is the result of evolving the sig-
nificant schema of the population towards the optimal solution
along with individuals’ evolution. Extracting a new schema may
cause a jump in the population’s semantics plot, which shows
the explicit schema evolution leading to the explicit changes in
generated offsprings in correspondence to the schema.

5.5. Controlling tree growth

Fig. 12 illustrates the average size of trees in the popula-
tion during the evolution. Since SBGP uses local recombination,
biasing the offsprings towards the schema, is less affected by
the destructive effect of standard recombination. Moreover, the
number of introns in the tree decreases because the presence of
active building blocks in the trees is encouraged. Ultimately, this
algorithm essentially controls bloat, as can be seen in most of the
charts.

5.6. Semantic diversity

Fig. 13 illustrates the semantic diversity of the population
during the evolution. In [38], it is shown that ICSS schema keeps
semantic diversity high despite producing individuals with high
semantic averages. Furthermore, the definition of semantic diver-
sity has been introduced as the standard deviation of the popu-
lation’s semantic. Since considering the probability of local and
standard operators based on the diversity helps preserve the pop-
ulation’s diversity, these probabilities have been set accordingly
based on Eqs. (2) and (3). In addition, considering the conditions
for the transition of the significant schema based on diversity is
another step towards increasing the population’s diversity.

Results indicate that the diversity has been kept high until
the end of the evolution. Based on the charts, simultaneous with
schema’s evolution, the diversity increases because semantic di-
versity is the criterion for schema transition. In fact, this diversity
is calculated in each generation, and if it decreases compared to
previous generations, the next schema is extracted. Producing a
new schema generates trees with new building blocks leading
to the exploration of new points in the semantic space. There-
fore, the diversity increases, and this process continues until the
evolution terminates. In RatPol2D and UBall5D benchmark func-
tions, the diversity in the last generations is unchanged, and the
population has converged, yet in more complicated benchmarks
like Concrete and Toxicity, the diversity changes until the last
generations and even does increase at the end of the evolution.
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Fig. 10. SBGP convergence trends (comparison of the best individual and population average).
.7. Number of schema samples

Fig. 14 demonstrates the number of samples of the signifi-
ant schema of the population in different generations. Immedi-
tely after schema extraction, the number of schema instances
n the population decreases. As the evolution proceeds, local
perators generate and distribute schema samples within the
opulation. As a result, the number of samples increases grad-
ally. This process continues until the semantic diversity of the
opulation decreases, and the conditions for transition of the
chema are met. Here, the next schema is extracted, and once
gain, the number of samples of newly extracted significant
chema decreases, and this process repeats until the end of the
volution.
13
5.8. Schema extraction rate

Diagrams of Fig. 15 illustrate the schema extraction rate in
each generation. In fact, in different runs, the schema extraction
occurs in different generations. The schema extraction rate in a
generation refers to the fraction of the runs in which the schema
has been extracted in that generation. This rate is proportion-
ate to the changes in the number of schema samples and the
semantic diversity studied in previous experiments.

5.9. Comparison with standard genetic programming

Fig. 16 compares the evolution convergence of the best indi-
vidual in SBGP and standard genetic programming in the terms of
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training error measured by RMSE. As it is illustrated in the figure,
the best individual of the evolution found in the last generation
of SBGP is far better than standard GP, in all benchmarks. The
improvement rates for Pollen, Concrete, Bioavailability, UBall5D,
Toxicity and RatPol2D are 65%, 39%, 24%, 65%, 14% and 26%,
respectively. It is also revealed in the figure that the convergence
speed of SBGP is much more than standard GP. It seems that the
gradual search strategy of SBGP along with local operators leads
to improve the performance of the proposed algorithm compared
to standard GP.
14
5.10. Locality

To evaluate the locality of SBGP, we defined the Semantic
Distance (SD) according to (8), which measures the distance for
each two consecutive generations. Fig. 17 gives the results of this
evaluation.

SD =

popSize∑
g=1

⏐⏐s(popg ) − s(popg−1)
⏐⏐ (8)

The shorter the distance, the higher the locality of the algo-
rithm. Diagrams in Fig. 17 depict this measure for SBGP,
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omparing it with standard genetic programming. As it can be
nferred from the figure, the semantic locality of SBGP is more
han standard GP in most generations.

.11. Comparing SBGP performance with other methods

In this section, we compare the accuracy of SBGP with other
ersions of genetic programming in terms of RMSE for
raining and testing sets, respectively. Moreover, the average size
f trees in the population of the last generation is reported in the
ables. Genetic programming versions, which we compare with
BGP, include two general categories. The first consists of the
est semantic genetic programming algorithms, and the second
ontains the algorithms which somehow perform gradualism
15
via data-driven layered learning. Furthermore, standard genetic
programming, abbreviated as GP, can be seen in the tables for
comparison. The general settings of genetic programming have
been set identical for all methods in these experiments. The
probability of recombination and mutation for methods other
than SBGP have been set to 0.9 and 0.1, respectively.

To evaluate whether the superiority of a method is statistically
significant, a two-tailed Welch’s t-test with a significance level
was applied for training and test error between the proposed
method and other methods in all comparisons. Welch’s t-test is
a nonparametric univariate statistical test, which is useful when
the two samples have unequal variances. The last two columns
of Tables 3–5 show the p-value of the two-tailed Welch’s t-test.
In most cases the null hypothesis is clearly rejected based on the
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Fig. 13. Changes of semantic diversity in the evolution process.
ests with a 95% confidence level (p-value < 0.05), and the results
re statistically significant.

.12. Comparison with geometric semantic genetic programming
ethods

Semantic genetic programming methods have gained atten-
ion and extensive study in recent years. These approaches are
eliberately established on localization and the use of geometric
roperties in the semantic space. From these methods, SGX [31]
roposed a direct geometric semantic recombination operator
or the first time, along with SSGX [62], its improved version
16
introduced in 2016, which has attracted much attention. More-
over, AGX and RDO operators [55,56], the latest and most re-
liable semantic recombination operators, have been utilized for
comparison. To implement these methods, we used SSGX paper
source code available at github.3 The library size for AGX and RDO
is set to 1000, and the library’s trees’ depth is set to 4, based on
the authors’ recommendations. The probability of using standard
recombination has been set to 0.3 for SSGX. The selected subtree’s
size for tree estimation is considered to be between 2 and 80,
which complies with the authors’ suggestion in [62].

3 https://github.com/jmmcd/GP-SSGX.

https://github.com/jmmcd/GP-SSGX
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Table 3 compares the accuracy of semantic genetic program-
ing methods in terms of the best individual’s error along with

he average tree size for each algorithm and each problem. The
rror of the best found individual is measured upon training and
esting datasets of each benchmarks, respectively and reported
nder training and test error columns. Regarding the repetition
f running each algorithm, the average and standard deviation of
btained results in different runs are specified.
Form the training error viewpoint, SBGP outperforms other

ethods in all benchmarks except the RatPol2D. The average
mprovement rates for Pollen, Concrete, Bioavailability, Toxicity
17
and UBall5D over other algorithms are 34%, 40%, 22%, 27% and
32%, respectively. In RatPol2D benchmark, SPGP has obtained the
lowest training error after RDO. Since, gradual evolution gives the
SBGP algorithm a chance for local search in semantic space and
manages the evolution beyond the semantic schemas, it is capable
of minimizing the training error better than most of semantic
GPs. In terms of test error, again, SBGP has achieved the best
performance in four out of six benchmarks. More precisely, the
average improvement rates for Pollen, Bioavailability, Toxicity
and RatPol2D over other algorithms are 33%, 15%, 7% and 70%,
respectively. In both Concrete and UBall5D, SPGP is the second
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Fig. 15. Schema extraction rate in different generations.
est algorithm after RDO in the former and SSGX in the latter.
ince in SBGP, the evolution is biased towards the samples of
specific schema, genetic programming cannot freely fit the
odel to training data. This constraint decreases the overfitting
nd increases generalization. For example, although RDO has the
est performance in training error in RatPol2D dataset, it cannot
eneralize well. Because RatPol2D is a very challenging bench-
ark from the generalization aspect. However, in spite of higher

raining error, SPGP has superior performance in generalization
f this benchmark. To sum up, it can be revealed from the table
hat SBGP has had less training error in 29 comparison cases out
f 30 and less test error denoting the better generalization in 28
omparison cases out of 30.
18
The performance of the proposed method is comparable with
other methods in terms of average tree size. SSGX has had
the least tree size in most benchmarks since this method first
estimates each tree with one of its subtrees and then applies
recombination.

5.13. Comparison with data-driven layered learning genetic pro-
gramming methods

Data-driven layered learning genetic programming includes a
set of genetic programming methods that attempt to make the
evolution gradual through data layering and provide high gener-
alization. Here, we compare the proposed algorithm in terms of
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Fig. 16. Comparing SBGP convergence with standard genetic programming.
raining and test error and trees’ size with the mentioned algo-
ithms described in Section 3.4. Among these methods, GPC [66],
ST [65], and Stage-Based Method [67] have been selected as
ell-known methods in this area, and VBLL-GP [68] and SGP [69,
8], are chosen as statistical variants of GP, along with RCGP [70]
hat is presented recently.

Table 4 compares the accuracy of data-driven layered learning
ased GP methods in terms of the best individual’s error along
ith the average tree size for each algorithm and each problem.
The error of the best individual of the evolution is measured

ver the training and testing datasets of each benchmarks and
eported under corresponding columns. The average and standard
19
deviation of obtained results in different runs are specified, due
to execution repetition.

The results indicate that SBGP had less training error than
other methods in 45 comparisons out of 48. Actually, it has
outperformed other methods in Pollen, Concrete and Toxicity
datasets and has gained the second place in UBall5D and Bioavail-
ability datasets with a slight difference to RCGP. The average
improvement rates for Pollen, Concrete and Toxicity over other
algorithms are 59%, 23% and 10%, respectively. Since, SBGP is
equipped with early termination of the evolution based on the
validation error in order to prevent the individuals’ function from

overfitting to the training data, we do not expect it to have
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Fig. 17. Comparing the semantic space of SBGP and standard genetic programming.
he best performance from the training error perspective. Rather
BGP is designed to generalize well over the benchmarks. In
he case of test error, SBGP has gained the best performance
n four out of six benchmarks. More precisely, the average im-
rovement rates for Pollen, Concrete, Bioavailability and UBall5D
ver other algorithms are 65%, 36%, 10% and 61%, respectively.
n both Toxicity and RatPol2D benchmarks, SPGP is the second
est algorithm after RCGP. Although the selected methods often
tilize strategies for increasing generalization to improve their
fficiency, SBGP has gained better generalization in 46 out of
8 records of the table. In addition to early termination of the
volution, biasing the population towards the instances of the
20
significant schema, prevents SBGP from overfitting to the training
dataset and increases generalization.

The average size of the trees in SBGP is also far less than
other methods except RCGP. Since the smallest form of the build-
ing blocks in local operators is used to produce the offsprings,
the trees’ size is controlled to some extent. Additionally, us-
ing the validation set causes the algorithm to terminate before
overfitting, resulting in simpler and shorter solutions. The main
objective of RCGP is reducing the tree size; therefore, this mea-
sure is extremely low in this method. The average tree size
in SBGP is less than all methods except RCGP in almost all
benchmarks.
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Table 3
Error comparison with semantic genetic programming.
Benchmark function Algorithm Training error Test error Tree Size Average p value (Training error) p value (Test error)

Pollen

SBGP 1.46 ± 0.02 1.57 ± 0.24 154.6 ± 88.7 – –
GP 4.14 ± 0.37 6.78 ± 0.93 5349.8 ± 407.2 3.74E−18 4.06E−17
AGX 1.83 ± 0.47 1.85 ± 0.48 304.6 ± 94.6 2.29E−03 2.71E−02
RDO 1.61 ± 0.40 1.62 ± 41.0 194.6 ± 67.5 1.10E−01 9.96E−01
SGX 3.14 ± 0.09 3.18 ± 0.11 65.25 ± 10.8 1.28E−27 5.32E−21
SSGX 1.97 ± 0.28 1.98 ± 0.28 100.45 ± 22.1 1.24E−07 1.53E−05

Concrete

SBGP 7.98 ± 0.51 8.89 ± 0.46 270.0 ± 58.1 – –
GP 13.13 ± 1.62 17.49 ± 1.89 5113.8 ± 411.3 2.23E−12 3.67E−15
AGX 11.51 ± 1.12 12.48 ± 1.48 271.1 ± 31.4 6.84E−13 4.65E−10
RDO 11.79 ± 16.40 8.02 ± 1.64 390.5 ± 47.7 3.12E−01 3.24E−02
SGX 26.51 ± 3.43 27.38 ± 3.28 53.2 ± 14.2 4.29E−16 2.08E−16
SSGX 11.81 ± 1.42 12.80 ± 1.73 114.9 ± 31.0 4.29E−11 2.14E−09

Bioavailability

SBGP 26.20 ± 1.50 31.23 ± 1.26 302.5 ± 160.6 – –
GP 34.85 ± 1.87 36.34 ± 2.80 4114.5 ± 361.1 3.87E−18 6.06E−08
AGX 30.97 ± 3.64 33.70 ± 2.78 21.5 ± 4.6 1.22E−05 1.23E−03
RDO 29.97 ± 0.87 33.97 ± 0.47 188.5 ± 16.6 7.43E−11 2.73E−09
SGX 48.71 ± 2.12 46.57 ± 2.09 114.8 ± 56.8 7.42E−30 1.00E−23
SSGX 30.41 ± 2.46 36.28 ± 13.34 90.3 ± 15.6 2.54E−07 1.08E−01

Toxicity

SBGP 1585.4 ± 97.3 1902.10 ± 52.37 301.89 ± 79.03 – –
GP 1859.3 ± 65.2 2125.5 ± 101.1 9081.1 ± 434.7 4.85E−12 1.36E−09
AGX 2271.2 ± 111.1 1931.2 ± 28.13 207.6 ± 22.85 4.12E−22 3.67E−02
RDO 2176.2 ± 119.67 1978.1 ± 198.4 310.8 ± 28.6 4.98E−19 1.12E−01
SGX 2530.6 ± 125.01 2243.7 ± 417.37 340.1 ± 53.6 3.07E−25 1.71E−03
SSGX 2141.03 ± 65.3 2017.36 ± 312.51 109.44 ± 25.23 6.93E−21 1.19E−01

UBall5D

SBGP 0.19 ± 0.01 0.21 ± 0.01 246.8 ± 100.01 – –
GP 0.551 ± 0.044 0.690 ± 0.088 181.435 ± 119.968 2.83E−20 5.07E−16
AGX 0.23 ± 0.01 0.23 ± 0.07 142.3 ± 144.6 3.41E−15 2.21E−01
RDO 0.22 ± 0.02 0.45 ± 0.093 167.4 ± 53.47 1.85E−06 4.19E−10
SGX 0.47 ± 0.07 0.48 ± 0.07 640.10 ± 9.45 1.35E−13 2.66E−13
SSGX 0.20 ± 0.01 0.19 ± 0.01 622.05 ± 38.91 3.07E−03 2.04E−07

RatPol2D

SBGP 1.05 ± 0.21 2.18 ± 0.31 189.430 ± 46.198 – –
GP 1.43 ± 0.42 5.81 ± 4.83 239.586 ± 228.848 1.16E−03 3.30E−03
AGX 1.15 ± 0.62 6.05 ± 2.01 414.624 ± 171.515 5.01E−01 4.60E−08
RDO 0.46 ± 0.19 17.01 ± 13.11 509.5 ± 135.79 2.58E−11 6.97E−05
SGX 2.71 ± 1.07 5.36 ± 4.81 197.93 ± 51.29 1.13E−06 8.16E−03
SSGX 1.15 ± 0.39 9.53 ± 5.29 111.05 ± 25.36 3.21E−01 5.67E−06
Fig. 18. Comparison of average relative percentage improvement between
different methods.

5.14. Comparison with other function approximation methods

Here, we compare the training and test error of the pro-
posed method with some of the most popular machine learning
methods to determine SBGP position between non-evolutionary
methods. These methods include the linear and binomial regres-
sion, called linear model and Quadratic Model in the tables, as
well as, Least Squares Support Vector Machine (LS-SVM) [84], one
21
of the best methods to approximate the function and RBF (Radial
Basis Function) Neural Network, along with Random Forrest, a
widely used and famous decision tree algorithm. For the last three
methods, training, test, and validation sets have been used similar
to SBGP. The validation set has been employed to find the main
parameters of each method. Moreover, a random model is devel-
oped as a baseline which generates target from uniform random
distribution in the range of training samples. The obtained results
can be seen in Table 5, wherein the standard deviation of the
proposed method has been reported, given the determinism of
other methods except Random Forest and Random model, the
standard deviation is zero in their different runs. Based on the
results, it can be said that SBGP’s performance and generaliza-
tion are considerably better than linear regression and quadratic
model. Moreover, this method’s generalization in four datasets
has been better than RBF and Random Forrest methods and in
three cases out of six datasets, better than LS-SVM. In addition, it
can be inferred from the table that the proposed method performs
better than all or all but one method in five datasets in terms of
generalization.

5.15. Comparison summary

To compare the overall performance of SBGP with other meth-
ods, the results of Standard GP were selected as a baseline, and
relative improvement percentage of each method was computed.
The obtained results for each method were averaged over six
benchmark functions. Fig. 18 shows the average relative im-
provement percentage of 14 methods. As can be seen, the pro-
posed method obtained the highest average (i.e., 47.11%), fol-
lowed by Random Forest and RCGP that obtained 45.94% and

39.09% improvement, respectively.
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Table 4
Comparison with data-driven layered learning genetic programming.
Benchmark function Algorithm Training error Test error Trees’ Size Average p value (Training error) p value (Test error)

Pollen

SBGP 1.46 ± 0.02 1.57 ± 0.24 154.68 ± 88.7 – –
GP 4.14 ± 0.37 6.78 ± 0.93 5349.8 ± 407.2 3.74E−18 4.06E−17
VBLL-GP 3.74 ± 0.25 3.76 ± 0.53 4021.0 ± 532.3 3.98E−20 1.15E−15
SGP 3.01 ± 0.29 5.22 ± 0.64 1107.6 ± 165.5 1.01E−15 2.35E−18
GBC 3.98 ± 0.20 4.42 ± 0.46 3649.2 ± 366.1 6.49E−23 8.71E−21
RST 3.55 ± 0.44 4.30 ± 0.87 4190.3 ± 426.9 9.89E−15 4.20E−12
Stage-based 3.57 ± 0.16 6.54 ± 0.72 4651.0 ± 372.8 1.81E−23 8.24E−20
RCGP 3.16 ± 0.34 3.18 ± 0.31 104.5 ± 31.4 3.66E−15 8.62E−20

Concrete

SBGP 7.98 ± 0.51 8.89 ± 0.46 280.01 ± 58.1 – –
GP 13.13 ± 1.62 17.49 ± 1.89 5113.8 ± 411.3 2.23E−12 3.67E−15
VBLL-GP 9.09 ± 1.21 11.39 ± 1.35 6043.1 ± 468.8 8.45E−04 5.46E−08
SGP 8.11 ± 1.48 15.73 ± 1.54 1563.2 ± 220.9 7.14E−01 2.63E−15
GBC 12.81 ± 1.38 13.65 ± 1.51 4331.8 ± 366.5 1.62E−13 2.92E−12
RST 12.30 ± 1.57 15.13 ± 2.04 5763.4 ± 548.8 3.71E−11 1.06E−11
Stage-based 11.67 ± 1.49 15.10 ± 0.83 5300.6 ± 372.1 2.61E−10 1.94E−23
RCGP 8.55 ± 0.94 11.61 ± 1.31 51.7 ± 17.4 2.38E−02 6.98E−09

Bioavailability

SBGP 26.20 ± 1.50 31.23 ± 1.26 302.58 ± 160.6 – –
GP 34.85 ± 1.87 36.34 ± 2.80 4114.5 ± 361.1 3.87E−18 6.06E−08
VBLL-GP 31.48 ± 1.05 31.79 ± 1.16 3076.6 ± 282.2 1.19E−14 1.52E−01
SGP 27.56 ± 1.26 34.97 ± 1.21 875.3 ± 103.6 3.65E−03 1.15E−09
GBC 33.75 ± 1.92 35.47 ± 2.01 2036.5 ± 281.4 5.59E−16 4.06E−09
RST 30.30 ± 2.57 34.87 ± 2.30 3842.1 ± 340.6 8.18E−07 8.45E−07
Stage-based 30.83 ± 2.98 36.22 ± 2.93 3522.0 ± 265.1 1.04E−06 2.07E−07
RCGP 25.10 ± 0.27 32.91 ± 1.13 47.2 ± 11.38 4.18E−03 7.66E−05

Toxicity

SBGP 1585.4 ± 97.3 1902.10 ± 52.37 301.89 ± 79.03 – –
GP 1859.3 ± 65.2 2125.5 ± 101.1 9081.1 ± 434.7 4.85E−12 1.36E−09
VBLL-GP 1839.9 ± 45.3 1954.0 ± 73.2 5033.2 ± 562.1 4.21E−11 1.44E−02
SGP 1703.2 ± 88.90 2053.4 ± 67.6 1026.3 ± 105.2 2.88E−04 2.27E−09
GBC 1863.2 ± 71.1 2065.1 ± 66.4 5642.1 ± 382.3 4.07E−12 2.78E−10
RST 1817.7 ± 151.3 2092.1 ± 185.7 7680.3 ± 547.2 1.99E−06 2.25E−04
Stage-based 1714.5 ± 80.3 2198.3 ± 216.0 7996.2 ± 321.6 5.26E−05 6.19E−06
RCGP 1617.1 ± 50.8 1788.5 ± 293.3 48.3 ± 10.4 2.07E−01 1.03E−01

UBall5D

SBGP 0.19 ± 0.01 0.21 ± 0.01 264.8 ± 100.01 – –
GP 0.551 ± 0.044 0.690 ± 0.088 1651.2 ± 239.9 2.83E−20 5.07E−16
VBLL-GP 0.495 ± 0.021 0.589 ± 0.057 806.7 ± 176.0 3.58E−30 5.28E−18
SGP 0.372 ± 0.045 0.647 ± 0.051 263.0 ± 54.9 5.03E−14 2.30E−20
GBC 0.503 ± 0.027 0.627 ± 0.051 1002.8 ± 184.5 1.39E−25 5.92E−20
RST 0.491 ± 0.061 0.631 ± 0.076 1456.8 ± 357.3 2.07E−15 3.19E−16
Stage-based 0.520 ± 0.073 0.656 ± 0.093 1574.1 ± 254.9 1.43E−14 5.98E−15
RCGP 0.16 ± 0.03 0.29 ± 0.20 44.2 ± 9.8 3.03E−04 8.98E−02

RatPol2D

SBGP 1.05 ± 0.21 2.18 ± 0.31 189.430 ± 46.198 – –
GP 1.43 ± 0.42 5.81 ± 4.83 239.586 ± 228.848 1.16E−03 3.30E−03
VBLL-GP 1.27 ± 0.14 2.27 ± 0.52 2138.1 ± 197.6 4.47E−04 5.11E−01
SGP 0.42 ± 0.08 3.32 ± 0.56 548.9 ± 88.0 3.96E−12 7.47E−09
GBC 1.37 ± 0.39 2.72 ± 0.70 1765.5 ± 201.4 3.05E−03 4.01E−03
RST 1.24 ± 0.27 3.19 ± 0.66 2682.7 ± 249.8 1.78E−02 1.27E−06
Stage-based 1.10 ± 1.52 4.38 ± 1.03 2891.9 ± 286.0 8.86E−01 5.04E−09
RCGP 0.68 ± 0.13 2.06 ± 0.84 47.8 ± 15.1 1.53E−07 5.55E−01
5.16. Computational cost comparison

To further evaluate the performance of SBGP, some important
P based methods’ computational costs were compared. Table 6
resents the average running time and standard deviation of each
ethod in each benchmark function. As can be seen, the running

ime of SBGP is close to AGX and RDO results. The time efficiency
f GP is better and RCGP is far better than semantic methods
ecause it uses some mechanisms for controlling the size of trees.
o sum up, the computational cost of SBGP is comparable with
emantic GP methods. Due to semantic calculation and semantic
pace manipulation (alone or along with syntactic space) these
ave more computational cost in comparison with traditional GP
ethods, however in most of symbolic regression applications,
rror minimization is more important than computational cost.

. Conclusion and future work

This paper introduced the Schema-Based Genetic Program-
ing (SBGP) algorithm. It makes the searching process of ge-
etic programming gradual, somehow combining local and global
22
searches to improve the algorithm’s performance. Utilizing lo-
cal operators, which bias the offsprings towards the schema,
improves genetic programming search power. After introducing
local operators and the SBGP algorithm in this paper, we analyzed
this method’s performance over six dataset including real world
and synthesized benchmarks. Comparing SBGB with the most
popular semantic genetic programming versions on the one hand
and data-driven layered methods on the other hand. Results show
that in terms of generalization measured by RMSE, the proposed
method outperforms both genetic programming sets of algorithm
in four out of six benchmarks and obtain near to best results
in others. The generalization improvement of SBGP in semantic
genetic programming comparisons is up to 87% and in layered
learning comparison experiments up to 76%.

As the future work, we intend to expand the notion of se-
mantics and the algorithm SBGP for classification domain. It is
also beneficial to modify the algorithm in order to evolve trees
with lower sizes and replace trees with their semantically equal
subtrees as performed in some of the previous works.
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Table 5
Comparison with other function approximation methods.
Benchmark function Algorithm Training error Test error p value (Training error) p value (Test error)

Pollen

SBGP 1.46 ± 0.02 1.57 ± 0.24 – –
Linear model 8.26 8.29 8.85E−50 3.50E−29
Quadratic model 8.23 8.26 9.63E−50 3.81E−29
LS-SVM 1.78 3.79 1.42E−24 4.42E−20
RBF 2.82 8.01 1.68E−36 7.86E−29
Random forest 2.08 ± 0.24 3.18 ± 0.04 4.41E−10 5.07E−18
Random model 21.75 ± 0.55 22.46 ± 0.74 1.61E−31 1.25E−33

Concrete

SBGP 7.98 ± 0.51 8.89 ± 0.46 – –
Linear model 99.76 102.75 1.57E−44 1.45E−45
Quadratic model 48.57 49.19 8.48E−38 1.37E−38
LS-SVM 1.35 13.15 7.22E−23 4.32E−20
RBF 12.80 19.74 2.95E−20 9.07E−28
Random forest 3.22 ± 0.50 6.26 ± 0.84 5.92E−28 4.09E−13
Random model 29 ± 0.53 30 ± 0.46 1.32E−51 9.22E−54

Bioavailability

SBGP 26.20 ± 1.50 31.23 ± 1.26 – –
Linear model 203.65 1463.88 4.55E−41 9.67E−60
Quadratic model 147.81 736.12 5.97E−38 6.89E−54
LS-SVM 15.65 29.85 7.49E−18 9.99E−05
RBF 18.58 32.04 3.10E−15 9.70E−03
Random forest 19.67 ± 0.97 31.79 ± 1.04 3.01E−17 1.34E−01
Random model 46.6 ± 1.92 42.2 ± 1.06 2.29E−30 2.01E−27

Toxicity

SBGP 1585.4 ± 97.3 1902.10 ± 52.37 – –
Linear model 332691.43 332718.92 8.71E−69 6.85E−74
Quadratic model 52577.51 52214.66 2.38E−53 2.38E−58
LS-SVM 1014.90 1893.76 2.20E−16 4.85E−01
RBF 278.32 2275.27 3.88E−23 5.87E−18
Random forest 1250.33 ± 138 2058.63 ± 19.02 2.18E−10 5.02E−12
Random model 2378 ± 12 2462 ± 14 2.14E−19 3.64E−23

UBall5D

SBGP 0.19 ± 0.01 0.21 ± 0.01 – –
Linear model 0.739 0.836 9.82E−35 8.12E−36
Quadratic model 0.525 0.531 1.16E−30 2.62E−30
LS-SVM 0.190 0.472 1.00E+00 1.24E−28
RBF 0.182 0.541 2.00E−03 1.46E−30
Random forest 0.141 ± 0.02 0.272 ± 0.03 1.53E−10 8.07E−09
Random model 0.34 ± 0.01 0.35 ± 0.007 1.99E−35 8.38E−34

RatPlo2D

SBGP 1.05 ± 0.21 2.18 ± 0.31 – –
Linear model 3.67 4.58 1.57E−22 1.25E−18
Quadratic model 3.32 3.42 2.35E−21 2.40E−13
LS-SVM 0.073 0.34 1.55E−14 1.76E−16
RBF 0.024 0.56 6.34E−15 1.84E−15
Random forest 0.33 ± 0.06 1.04 ± 0.07 6.53E−13 3.10E−13
Random model 2.48 ± 0.14 3.16 ± 0.18 2.98E−23 2.73E−13
Table 6
Error comparison with semantic genetic programming.
Benchmark function Running Time (s)

SBGP GP AGX RDO RCGP

Pollen 923 ± 98.2 271.2 ± 71.2 845.3 ± 165.4 977.4 ± 151.7 168.6 ± 49.3
Concrete 1127.5 ± 390.5 539.0 ± 53.9 1147.0 ± 103.2 1401.2 ± 125.5 281.43 ± 37.9
Bioavailability 717.4 ± 54.0 260.1 ± 65.8 645.0 ± 75.1 688.9 ± 69.0 171.9 ± 46.1
Toxicity 1593 ± 118.5 521.4 ± 96.2 1105.4 ± 117.0 1301.3 ± 123.5 351.6 ± 56.5
UBall5D 229 ± 20.3 151.5 ± 30.2 621.3 ± 76.3 521.1 ± 80.9 134.9 ± 29.2
RatPol2D 779 ± 54.1 351.5 ± 51.9 822.9 ± 81.2 893.0 ± 77.9 271.1 ± 39.8
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